

**SANKALCHAND PATEL
UNIVERSITY**
॥ अथातो ज्ञानजिज्ञासा ॥

FOR A BETTER TOMORROW

VOLUME : 01 ▾

Issue : 01

Jan-June 2024

**SANKALCHAND PATEL UNIVERSITY
JOURNAL OF SCIENCE, TECHNOLOGY
AND MANAGEMENT RESEARCH
(SPU-JSTMR)**

• RESEARCH JOURNAL •

Sankalchand Patel University Journal of Science, Technology and Management Research (SPU-JSTMR)

Peer-Reviewed Journal

Volume- I, ISSUE-01, Jan-June 2024

Chief Editor(s)

Prof. (Dr.) Prafulkumar Udani

Prof. (Dr.) Hetalkumar Shah

**Sankalchand Patel University
Sankalchand Patel Vidyadham Ambaji-Gandhinagar,
State Highway, Visnagar 384315, India**

Date: 30.01.2024

FOREWORD

Sankalchand Patel University has my gratitude and pleasure to release the first volume of the journal, "**SPU Journal of Science, Technology, and Management Research**". I take great pride in this journal's services, which particularly benefit students, researchers, and educators in the fields of science, technology, and management. This magazine publishes articles with theoretical frameworks and application scopes that meet the cutting-edge requirements of science, technology, management, fashion design, and commerce fields.

This journal stands as a testament to the relentless pursuit of knowledge, the dedication of our scholars, and the commitment to excellence that defines our institution. The articles within this first volume represent a diverse array of groundbreaking research, innovative ideas, and thought-provoking insights that showcase the intellectual vitality of our academic community. I encourage each member of our community to engage with the contents of this journal, fostering dialogue, collaboration, and further exploration of the ideas presented. The SPU Journal is a platform for the exchange of knowledge and the cultivation of a vibrant scholarly community, and I am eager to witness the impact it will undoubtedly have on our academic landscape.

I commend the editorial team for their meticulous work in bringing together this collection of scholarly works. I feel proud of the journal published by Sankalchand Patel University. I congratulate the Editorial team of the journal "**SPU Journal of Science, Technology and Management Research**" for making this volume-I, Issue-01 successful.

Wish you all the best for your future endeavors.

Shri Prakashbhai Patel
President

Research/Review Papers on Science, Technology and Management Research

Volume- I, ISSUE-01, Jan-June 2024

Peer -Reviewed Journal

Chief Editor(s) :

- **Prof. (Dr.) Prafulkumar Udani**, Provost(I/C), Sankalchand Patel University (SPU), Visnagar
- **Prof. (Dr.) Hetalkumar Shah**, Director, Technical Courses, Sankalchand Patel University (SPU), Visnagar

Editor(s) :

- **Dr. Rajesh P. Patel**, Associate Professor, Department of Computer Engineering, Sankalchand Patel College of Engineering, SPU, Visnagar
- **Dr. Hitesh H. Mehta**, Associate Professor, Nootan Science College, SPU, Visnagar

Advisory Board:

- Dr. Amit Ganatra, Provost (Vice Chancellor), Parul University, Vadodara
- Dr. Ramesh Kothari, Professor and Head, Department of Biosciences, Saurashtra University, Rajkot
- Dr. Digvijaysinh Rathod, Associate Dean & Associate Professor, NFSU, Gandhinagar
- Dr. Ashish Joshi, Professor & Head, Kaushalya The Skill University, Gandhinagar
- Dr. Krupesh A. Chauhan, Professor, Department of Civil Engineering Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat
- Dr. N. P. Patidar, Professor of Electrical Engineering, MANIT, Bhopal
- Dr. Siddharth Joshi, Assistant Professor, Department of Electrical Engineering, School of Energy Technology, Gandhinagar
- Dr. Dhamodharan Kondusamy, Assistant Professor, Department of Environmental Engineering, Thapar University, Punjab
- Dr. Rajesh V. Savalia, Assistant Professor, Department of Mathematical Science, P.D. Patel Institute of Applied Sciences, CHARUSAT, Changa
- Dr. Ankur D. Amin, Assistant Professor, Department of Business Studies, Sardar Patel University, Vallabh Vidyanagar

Published by : Sankalchand Patel University, Visnagar 384315, India

Note: All inquiries regarding the Journal may please be sent to
Editor, SPU-JSTMR, Sankalchand Patel University, Visnagar 384315, India through
Email: communications.spujstmr@spu.ac.in

EDITOR'S NOTE

The university is pleased to release the first volume of the journal, "**SPU-Journal of Science, Technology and Management Research (SPU-JSTMNR)**" which features research and review papers authored by students, professors and researchers from various Institutions. This journal brings research articles in Interdisciplinary fields and due focus is given to science, technology and management areas. The Sankalchand Patel University Journal of Science, Technology and Management Research (SPU-JSTMNR) facilitates the rapid dissemination of original theoretical and applied research findings from a variety of disciplines, including Engineering, Science, Commerce, Management, Computer Applications and Fashion Design.

The papers may contain original research contributions such as state-of-the-art literature reviews, mathematical analyses, mathematical modeling and simulation analyses, design procedures, computer flowcharts and programs, real-world implementation, hardware realization in science and technology, and management case studies in all published articles and research papers in their entirety.

The present volume carries 09 articles written by research scholars and professors of Science, Technology and Management disciplines. We sincerely express our gratefulness to Honourable President Shri Prakashbhai Patel, Honourable Provost (I/C), Prof. (Dr.) Prafulkumar Udani for all their support in undertaking the publication of research articles and perfectly completing the task. We sincerely express our thanks to the Honourable Director, Prof. (Dr.) Hetalkumar Shah for unprecedented guidance from inception to the publication of this volume. We thank editorial board members and reviewers for providing fruitful comments for revising and improving the research paper's quality. We thank to scholars and professors for their valuable papers submitted for publication in the journal.

Dr. Rajesh P. Patel

Dr. Hitesh H. Mehta

CONTENTS

Sr. No.	Paper Title	Page No.
1	Advancements in Coordination Chemistry: A Comprehensive Review on the Synthesis and Characterization of Transition Metal Complexes with 4-Amino-5-pyridyl-4H-1,2,4-triazole-3-thiol Legends <i>Harshadkumar P. Patel, Himani M. Raval</i>	01
2	Exploring Financial Literacy Levels: Insights from College going Students of Gujarat State <i>Mitesh J. Patel, Jitendra Patil, Shakti Dodiya</i>	07
3	A Review of Studies Examining Machine Learning Techniques <i>Kiran V. Patel</i>	14
4	A Systematic Review of Transfer Learning Methods for Identifying Lung Disease Sounds <i>Vishakha Pagi, Jayesh Mevada, Mehul S. Patel, Ankur J. Goswami, Rupal R. Chaudhari</i>	24
5	Different Types of Methods to Recover Regenerative Energy Replacing Conventional Dynamic Braking of Variable Frequency Drive <i>Pankaj. C. Patel, Hansa. H. Patel, Habiba. V. Momin</i>	30
6	IOT Based Dustbin Monitoring System <i>Bhavik H. Prajapati, Ninama Ambikaben</i>	34
7	Predictive Modeling for ATME-TOX Properties of Drug Using Machine Learning: A Review <i>Anjali S. Patel, Kiran B. Thakor, Megha K. Patel</i>	39
8	Improving Voice Assistant User Experience through Context-Awareness and Personalization <i>Hetvi Tank, Kirit Modi, Ankur J. Goswami</i>	45
9	A Survey of Intrusion Detection Systems in Wireless Sensor Networks <i>Mehul S. Patel, Govind V. Patel, Jayesh M. Mevada, Ankur J. Goswami, Rupal R. Chaudhari</i>	56

Advancements in Coordination Chemistry: A Comprehensive Review on the Synthesis and Characterization of Transition Metal Complexes with 4-Amino-5-pyridyl-4H-1, 2, 4-triazole-3 thiol Ligands

Harshadkumar P. Patel¹, Himani M. Raval²

Lecturer, Swami Sachchidanand Polytechnic College, Sankalchand Patel University, Visnagar, India.¹
Assistant Professor, Urban Bank Science College, Mehsana, India.²

hppatel.sspc@spu.ac.in¹, himani.raval3244@gmail.com²

Abstract: This review paper offers an in-depth analysis of recent advancements in coordination chemistry, specifically focusing on the production and portrayal of transition metal complexes that incorporate 5-pyridyl 4-Amino-3-thiol -4H-1,2,4-triazole ligands. The study explores the various methods used to synthesize these complexes, covering a range of transition metals and diverse reaction conditions. It provides a thorough examination of the structural attributes, spectroscopic characteristics, and potential applications of the resulting complexes. The objective of the paper is to present valuable insights into the design, synthesis, and properties of these transition metal complexes, highlighting their importance in coordination chemistry and their promising applications in fields such as catalysis, medicine, and materials science.

Keywords: Spectral Analysis, Metal Complexes, PMR, Magnetic properties, Synthesis.

I. INTRODUCTION

Heterocyclic chemistry, a specialized field with a long-standing history, plays an essential role in modern society and presents significant potential for future advancements. Nitrogen, oxygen, and sulphur are identified as pivotal hetero atoms in these compounds. Among the various heterocyclic compounds, triazoles, particularly 1, 2, 3-triazoles and 1,2,4-triazoles, are of particular interest due to their importance in pharmaceuticals and industrial research. These five- membered rings, with the molecular formula C₂H₃N₃, have been thoroughly explored for their wide range of applications.

In particular, triazoles substituted with amine or thione groups exhibit notable anti-inflammatory and antimicrobial activities. As ligands, triazoles are highly valued for their ability to coordinate, as they contain both hard nitrogen and soft sulphur atoms. The coordination sites within the triazole structure include the sulphur from thiol groups, nitrogen from primary amino groups, and two nitrogen atoms within the triazole ring. This polydentate nature enables the formation of stable chelate complexes through bidentate coordination to metal ions, resulting in five-membered rings with enhanced stability.

The review further discusses the synthesis and portrayal of copper (ii), nickel (ii), zinc (ii), cadmium (ii), and tin (ii) complexes, utilizing 5-pyridyl 4-Amino-3-thiol, 4-H-1, 2, and 4-triazole by way of ligand.

II. RESOURCES AND PROCEDURES

Entire chemicals, components, and solvents used in this study were obtained from commercial sources and employed without further purification. Melting points were measured using a co slab melting point device. Fundamental analysis for carbon, hydrogen, nitrogen, and sulphur was performed using a Faison E.A.Analyser. Infrared spectrum was documented on a Shimadzu spectrophotometer, in the 4000–200 cm⁻¹. UV–Visible spectra (UV–VIS) were acquired with a Shimadzu spectrophotometer, covering the wavelength 250–1500 nm.

Magnetic susceptibility was determined at the room temperature with a Magnetic Vulnerability Balance from Jonson mathey. Conductivity was measured using a WTW conductivity meter, and atomic absorption spectroscopy was carried out with a Simatzu

685 blaze instrument. Proton and carbon PMR spectrum was documented on Bruker spectrometer, with deuterated DMSO as the solvent and tetra methylsilane (TMS) as the interior reference.

A. Production of 5-pyridyl -4-Amino -3-thiol -4H-1,2,4-triazole(Ligand):

Solution was prepared by dissolving 1 gram of iso nicotinic acid (0.0072 mol) and 0.44 grams of potassium hydroxide (0.008 mol) in 10 ml of ethanol. Once the solid was fully dissolved, 2.0 ml (0.015mol) of carbon disulphide was gradually additional to the mix. The reaction stirred for 12 hours. Following this, 12 ml of dry ether got introduced, leading to formation of the yellow ppts, which were subsequently filtered and washed with ether and dried. Obtained K salts were nearly quantitatively recovered and used in the following step. This yellow ppts (K salts) was then treated with extra hydrazine hydrate (25 ml), refluxed having continuous stirring till hydrogen sulphide gas evolution stopped, as established with Pb- Acetate rag. Later chilling, mix got filtered, hydrochloric acid were added to acidify the solution, resulting in the formation of a white precipitate. The overall yield was 62%, and the product had a melting point between 210–212 °C.

B. Formation of Complexes:

To prepare the metal complexes with this ligand, an ethanoic soln. of appropriate metal salts [Copper acetate, Tin chloride, Zincacetatdehydrate, Cadmium acetat, and Nickelacetat] was mixed with ethanoic soln. of 5-pyridyl 4-amino-3-thiol, 4-H-1,2,4-triazolein 1 is to 2 molar ratio of Metal to Ligand. The resulting mixture was refluxed for 2 hours, during which crystal-like, colour ed ppt formed upon cooling at the room temperature. The obtained solids was filtered and eroded with warm methanol, allowed to dry, then re crystallized using ethanol.

III. OUTCOMES AND CONVERSATION

The melting points besides corporeal characteristics as the all compounds studied are provided in Table: 1. C-H-N-S analysis was performed by means of the atomic flame absorption method, with experimental values closely matching the calculated ones. A summary of corporeal and analytical information, including melting points, elemental composition, for the ligand and its corresponding complexes, is presented in Table-1.

TABLE- 1
CORPOREALINFORMATION OF SYNTHESIZED COMPLEXES

Compounds	Colour	Melt. Pnt.	Fundamental examination theoretical and Investigational				
			% of Carbon	% of Hyd	% of Nitrgn	% of Sulphur	% of Metal
Ligand	Snowy	210–215	55.94(56.25)	4.33(4.65)	23.42(23.62)	12.31(12.56)	--
Ni(Ligand)2	Lime	242–245	30.05(39.27)	4.26(5.51)	39.18(40.11)	12.25(14.54)	11.20(11.48)
Cu(Ligand)2	Dusky green	223–226	49.69(42.21)	4.14(4.85)	38.82(39.62)	13.53(14.87)	12.07(14.13)
Zn(Ligand)2	Off silvery	175–182	36.43(39.09)	4.57(5.18)	38.70(23.70)	15.05(14.34)	12.47(13.17)
Cd(Ligand)2	Snowy	256–258	43.89(39.27)	5.76(4.49)	39.28(48.78)	11.02(13.38)	22.15(22.57)
Sn(Ligand)2	Creamy	232–234	43.55(34.19)	5.47(4.65)	35.91(35.47)	22.90(22.70)	22.64(21.04)

A. Infrared spectrography:

The FTIR spectra of the ligand exhibited distinct widening groups at 3352 and 3225 cm^{-1} (NH_2), 2736 cm^{-1} (S-H), 1645 cm^{-1} (C=N in the triazole ring), and 673 cm^{-1} (C-S bond stretch). Similar bands were observed in complexes 1–5, consistent with findings from various studies. The triazole ring may exist in different tautomeric forms (see Figure 1). The complete absence of the (S-H) band in the spectrum of complexes suggests de protonation prior to complex formation. Following de protonation, ligand can coordinate to

metal ion via either nitrogen or sulphur atoms of the thiamine group, with sulphur coordination being preferred, foremost to the development of a stable 5-membered chelate.

An exception is noted in the C=N stretching bands of complexes 1–5, which shift to lower wavelengths compared to the free ligand (L), indicating coordination through the nitrogen atom. Additionally, the NH₂ stretching bands also shift upon complexation. The disappearance of the S-H band and the shifts in the C-S and C=N bands suggest changes in bond orders and indicate coordination through sulphur. New bands corresponding to M-S and M-N bonds appear, further confirming the coordination. The significant IR bands and their likely assignments were summarized in Table: 2.

TABLE: 2
IR INFORMATION OF LIGAND AND COMPOUNDS

Centres	-NH2	-S-H bond	C = N bond	C-S bond	M-N bond	M-S bond
Ligand	3255, 3215	2632	1646	675	-	-
Ni(L) ₂	3285, 3220	-	1642	696	532	455
Cu(L) ₂	3318, 3282	-	1626	693	531	423
Zn(L) ₂	3323, 3285	-	1642	692	527	436
Cd(L) ₂	3435, 3389	-	1633	697	523	453
Sn(L) ₂	3250, 3155	-	1647	691	525	452

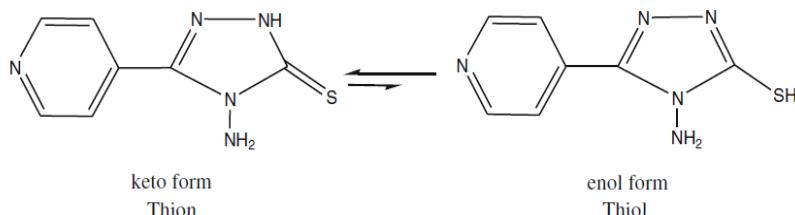


Fig. 1. Tautomeric form in triazole.

B. Nuclear Magnetic Resonance:

The ¹H PMR and ¹³C PMR spectra of Ligand and its metal compounds demonstrated outstanding solubility in the DMSO. The proton PMR spectra provided further evidence supporting the formation of the complexes. Shifts in the chemical positions of the peaks observed in the spectra suggest that complexation has taken place, as the electronic environment of the compound significantly affects its chemical shift.

i. 5-pyridyl-4-Amino-3-thiol-4H-1,2,4-triazole:

The ¹H PMR spectra of the ligand in DMSO at 300 MHz displays signs at 6.101 (2H, NH₂), 7.014, 7.025-8.744, and 8.755 (4-H d,d and aromatic C-H), 11.210 (1-H). The Carbon PMR spectrum demonstrates Chemical shifts on 112.435 (C- a), 153.097 (C- b), 153.792(C- c), 145.308 (C- d), and 148.429 (C- e) (Figure: 2).

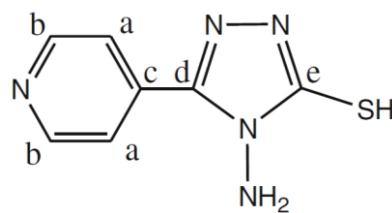


Fig.2. Construction of the ligand

ii. Compound-1:

The ^1H PMR spectrum for Complex 1 in DMSO-d6 at 300 MHz displays signs at 2.214 (2H, NH₂), which is moved downfield owed to coordination with zinc ion, as well as at 7.945, 8.014-8.739, and 8.678 (4H, d, d, aromatic CH), and 12.093 (1H, NH). The ^{13}C PMR spectrum displays chemical shifts at 123.004 (C- a), 134.584 (C - b), 142.993 (C- c), 146.685 (C- d), and 178.543 (C- e) (Figure: 3).

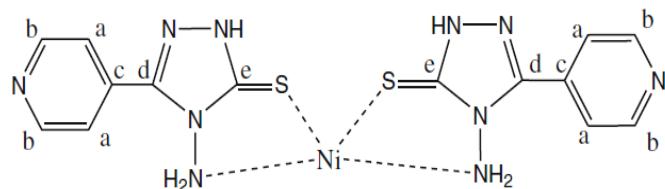


Fig.3. The configuration of compound-1 with Ni(Ligand)

TABLE: 3
PROTON PMR FIGURES OF LIGAND AND METAL COMPOUNDS OF 1, 3,4IN DMSOCENTRES

Compounds	C-H sigma bond Aromatic	-NH2	S-H sigma bond	N-H sigma bond
Ligand	(7.021,7.029-7.748,7.752)d,d	(4.303)s	(09.183)s	-
Ni(Ligand)2	(7.938,8.012-8.733,8.676)d,d	(2.315)s	-	(13.092)s
Zn(Ligand)2	(8.022-8.707)m	(2.352)s	-	(12.010)s
Cd(Ligand)2	(7.912,7.953-8,627,8.693)d,d	(2.272)s	-	(11.105)s

iii. Complex-2:

The ^1H NMR spectrum (ppm) for Complex 3 in Dimethyl sulfoxide-d6 at 300 MHz shows signs at 2.254 (2H, NH₂), which is downfield move do wing to coordination with the metal ion, 7.025-7.750 (4H, aromatic C-H), and 12.040 (1H, N-H). The ^{13}C PMR spectrum reveals organic shifts at 133.703 (C- a), 139.422 (C- b), 124.025 (C- c), 142.293 (C- d), and 169.149 (C- e) (Figure:4).

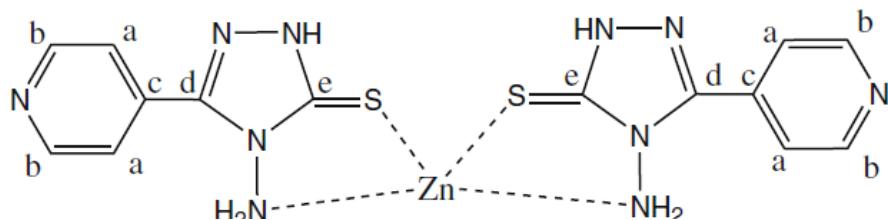


Fig. 4. Arrangement of compound: 3 with Zn (Ligand)

iv. Compound-3:

The ^1H PMR spectrum (ppm) for Complex 4 in Dimethyl sulfoxide-d6 at 300 MHz displays signs at 4.270 (2-H, NH₂), which is moved as a result of coordination with the metal ion, along with peaks at 7.901, 7.952-8.625, and 8.690 (4H, d, d, aromatic CH), and 12.205 (1-H,cNH). The ^{13}C PMR spectra demonstrations chemical changes at 132.943 (C- a), 135.625 (C- b), 152.016 (C- c), 145.293 (C- d), and 178.322 (C- e) (Figure:5).

Table: 3, 4 present the Proton and Carbon PMR information for the ligand plus Metal compounds: 1, 4, and 3 with Dimethyl sulfoxide, including their Chemical changes, δ .

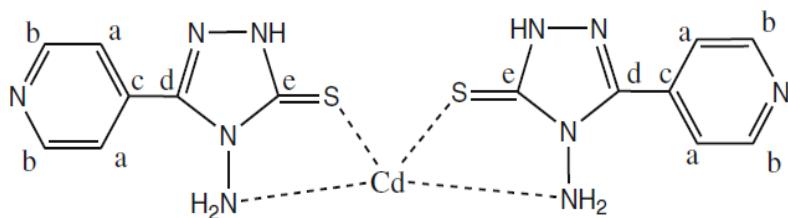


Fig. 5 Arrangement of complex: 4 with Cd(Ligand)

TABLE: 4

13C PMR STATISTICS OF LIGAND BESIDES METAL COMPOUNDS 1, 4, 3 IN DMSO SOLVENT

Compounds	C- a	C- b	C- c	C- d	C- e
Ligand	123.563	152.132	131.892	144.306	163.552
Ni(L)2	122.005	144.586	133.994	153.684	182.544
Zn(L)2	124.707	146.324	132.033	154.295	185.113
Cd(L)2	122.987	147.607	135.032	152.293	183.326

C. UV-Visible Spectrography:

The captivation spectrum of the ligand and its metal complexes were measured in DMSO solvent within the wavelength series of 260–950 nm. A summary of the electric spectrum for (Ligand) and its compounds is presented in the Table-5. The ligand shows three distinct absorption bands at 263, 302, and 309 nm, corresponding to intra ligand transitions: (n - π*) and (π- π*), respectively. The electronic spectra of complexes 1–5 exhibit similar transitions, though with slight shifts when compared to the free ligand.

For compounds- 1, 2, additional changes associated with metallic d orbitals (d-d evolutions) were detected in the visible region, specifically for Ni and Cu. Now Ni, the d-d orbital evolution seemed on 590nenometers, attributed to the T:1 → T:1 and T:1 → 3A2 transitions. In Cu(ii), absorption groups at 310, 280, 349, and 415 nm were assigned to the (n-π*) nad (π-π*), charge transfer, and T2→ E2 transitions, correspondingly. However, complexes-4, 5, and 6 were found to be Dia-Magnetic, by way of probable for d-10 metal ion, showing not at all d-d orbital transitions in the visible section.

TABLE-5
ELECTRIC SPECTRUM OF SYNTHESIZED COMPOUNDS

Compounds	Preoccupation	Transition
Ligand	262, 304, 302	(n-π*) (π-π*)
Ni(Ligand)2	261, 613	T1(F) → T1(P)(π-π*),
Cu(Ligand)2	283, 301, 314, 452	L→Cu, (n-π*), T2→E2, (π-π*)
Zn(Ligand)2	265, 303, 312	(n-π*) (π-π*)
Cd(Ligand)2	265, 313	(n-π*) (π-π*)
Sn(Ligand)2	266, 312	(n-π*) (π-π*)

D. Magnetic Liability and Conductivity Dimensions:

Magnetic capacities are frequently castoff to investigate transition metal compounds, as unpaired electrons in the partially filled d-orbitals influence their magnetic behaviour. Complex 1 displayed a magnetic moment of 1.13B. M., indicating it is para magnetic. Complex-2, with a magnetic second of 0.8 B.M., is thought to have a copper (ii) centre in a biased square planar geometry. In contrast, complexes-3 to 5 were found to be diamagnetic, with no observable magnetic moment in this reading.

Conductivity tests were performed on the complexes in ethanol to assess their electrolyte properties. Molar conductivity values for compounds-1 to 5 are shown in Table-6, indicating that all the complexes are non-electrolytes.

From the spectrum data, it is suggested that complexes 1–5 adopt biased tetrahedral geometries, with the exception of complex 2, which is believed to have a biased square planar structure. The projected structures for compounds 1–5 are depicted in Figure: 6.

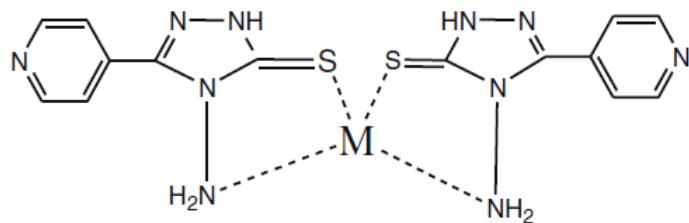


Fig.6. The projected structures of compounds 1–5 {M= Ni, Cu, Zn, Cd and Sn}.

TABLE: 6
CUNDUCTIVITY DIMENSION AND MAGNETIC MOMNTS. FOR LIGAND AND ITS COMPOUNDS

Compounds	Conductivity ($\mu\text{S}/\text{cm}$)	Magnetic moment (B.M.)
Ligand	--	--
Ni(Ligand)2	2	1.02
Cu(Ligand)2	1.5	0.4
Zn(Ligand)2	2.1	4.1
Cd(Ligand)2	2.3	1.98
Sn(Ligand)2	0.8	11.88

IV. INFERENCE

The ligand 5-pyridyl 4-Amino-3-thiol -4H-1, 2,4-triazole was effectively produced and utilized to form complexes with different metal ions. The coordination process involved the interaction of both the amino, thiol clusters of the ligand, foremost to the creation of a 5-membered chelate ring. It is proposed that the copper complex adopts a square planar geometry, whereas the other metal complexes are believed to have a tetrahedral -geometry.

REFERENCES

- [1] Haddad, Raghad, Emad Yousif, and Ahmed “ Synthesis and characterization of transition metal complexes of 4-Amino-5-pyridyl-4H-1, 2, 4-triazole-3-thiol.” SpringerPlus , 2013, pp. 1-6.
- [2] Acheson R, “An introduction to the chemistry of heterocyclic compound” Wiley, New York, 3, 1989, pp. 122–129
- [3] Al-Maydama H, Al-Ansi T, Jamil Y, Ali A “Biheterocyclic ligands: synthesis, characterization and coordinating properties of bis(4-amino-5-mercaptop-1,2,4-triazol-3-yl) alkanes with transition metal ions and their thermo kinetic and biological studies” 1989, Ecl Quim 33(3):29–42
- [4] Awad I, Abdel-Rahman A, Bakite “4-[*E*)-(3-Methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)iminomethyl] benzonitrile” J Chem Technol Biotechno 2008, pp. 483–486
- [5] Bele D, Singhvi I “A review on 1, 2, 4- triazole. Asian J of Biochem and Pharmaceutical Res” 2011, (1): pp. 88–100
- [6] Bruice P , Organic Chemistry, 2nd edn. Viacom Company, 1998, New Jersey
- [7] Carey F Organic Chemistry. McGraw-Hill Inc, 1980, America
- [8] Cheremisina M, Khlystunova E, Varand V “IR spectra of complexes of certain metals with thio and selenourea in the region of the metal-ligand vibrations” Bulletin of the Academy of Sciences of the USSR, division of chemical science. 1972, 21(12):pp. 2604–2606
- [9] Chohan Z , “Antibacterial dimeric copper (II) complexes with chromone derived compounds Trans” Met Chem 34: 2009, pp. 153–161
- [10] Clayden J, Greeves N, Warren S, Wothers P Organic Chemistry. New York, Oxford University, 2001, pp 798–799
- [11] Cos-kun A “The synthesis of 4-phenoxyphenylglyoxime and 4,4-oxybis(phenylglyoxime) and their complexes with Cu(II), Ni(II) and Co(II) ” Turk J Chem 2006, (30): pp. 461–469
- [12] Davari M, Bahrami H, Haghghi Z, Zahedi M (2010) “Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives” J Mol Model 2010, 16(5):pp.841–855
- [13] Figgis B , “Ligand Field Theory and its Applications”, 1st ed. John-Wiley, New YorkFlifel I, Kadhim, 2000.

Exploring Financial Literacy Levels: Insights from College going Students of Gujarat State

Mitesh J. Patel¹, Jitendra Patil², Shakti Dodiya³

Assistant Professor, Department of Business Management, Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar, Gujarat, India^{1,2,3}

mitpatel85@gmail.com¹, jitendrapatil.rbims@gmail.com², sbdodiya.mba@spcevng.ac.in³

Abstract: The development of financial inclusion and, eventually, the maintenance of financial stability in India depends heavily on financial literacy. Financial literacy is a change agent for financial inclusion, according to the RBI's agenda. The RBI wants to raise public knowledge of financial services and products. The daily financial market will grow increasingly complex since financial products and services are a concern. Which role do the pupils play? Do they have the requisite skills to make sound financial decisions? Can they anticipate their demands in terms of money? How do they take care of their money needs? Educating yourself on finances is one way to answer their questions. The degree of financial literacy among Gujarati college students is being investigated by a researcher using a straightforward random sampling approach. Students performed averagely in financial knowledge and, the researcher concluded that their level of financial literacy is average. Financial planners and friends have less of an influence on financial understanding than environmental factors like parents and life. Students' financial attitude and conduct are significantly influenced by their average financial literacy, which correlates with these factors.

Keywords: Financial Knowledge, College Students, Financial Attitude, Financial Literacy, Financial Behaviour.

I. INTRODUCTION

Researchers and politicians have shown a great deal of interest in the topic of financial inclusion. For five target groups, including farmers, the RBI has created customised financial literacy materials that trainers may use in financial literacy initiatives.(RBI, RBI). One of the key pillars of financial inclusion is banking, and the Indian banking system is made up of public, private, foreign, RRB, and cooperative (rural and urban) sector banks. As banking and financial systems continue to expand via digitisation, more financial goods and services are offered, creating a wide range of job opportunities. Therefore, it's critical to understand the current status of the nation's young. Are young people in India prepared to enter the financial industry or provide services? Do they know about every financial service or product on the market? Do they know about modern banking and how it relates to his life? The researchers want to determine how financially literate Gujarati college students are in order to answer all of the aforementioned issues.

II. LITERATURE REVIEW

Financial literacy encompasses three key components: financial knowledge, financial behavior, and financial attitude. The word "financial knowledge" describes one's comprehension of financial terms, concepts, and principles. It entails understanding financial concepts such as financial planning, debt management, investing, saving, and budgeting. Strong financial knowledge increases a person's ability to comprehend the consequences of financial products, make wise financial decisions, and successfully handle challenging financial circumstances. This section concentrates on an individual's knowledge of finance, including knowledge of interest rates, risk diversification, tax consequences, and financial regulations.

Financial conduct is the term used to describe the choices and actions people make regarding their money. It covers how they handle debt, save, invest, and make spending decisions. Consistent saving, cautious investing, prudent spending, and debt management are examples of positive financial behaviors. Negative financial practices, on the other hand, can result in excessive debt, overspending, or insufficient savings. One's financial well-being can be greatly impacted by their financial conduct, which is an expression of how one applies their financial knowledge in real-world situations.

A person's views, feelings, and behaviors about money and financial matters are referred to as their financial attitude. It covers their entire financial thinking, risk tolerance, and financial ambitions. Having a healthy relationship with money, being proactive in financial planning, and setting clear financial goals are all components of positive financial attitudes. Financial risk aversion, financial planning avoidance, and hasty spending are examples of negative attitudes. A person's attitude toward money

greatly influences their financial conduct. People who have a positive outlook are more likely to strive for their financial objectives and make wise financial judgments.

In summary, financial literacy comprises a combination of knowledge, behavior, and attitude. To be financially literate, individuals should not only acquire financial knowledge but also apply it through responsible financial behavior and cultivate a positive financial attitude. This holistic approach to financial literacy can lead to improved financial well-being and better financial decision-making.

Sociodemographic factors such as gender, age, education, home condition, and financial knowledge/attitudes were examined in an ANZ study on adult financial literacy in Australia in order to potentially provide light on variations in people's financial literacy levels. They came to the conclusion that elements including impulsivity, financial self-efficacy, financial aspiration, and financial attitudes that understand that handling money is stressful. (ANZ, 2015)

It would be unrealistic to expect people or families with limited financial literacy to handle different risks and be responsible in an uncompetitive financial market(OECD, 2009). It is particularly sensitive in developing nations such as India, where there is a considerable portion of the populace with limited exposure to the official financial system despite the country's expanding economic and financial development and availability of composite financial products.

Individuals with below-average financial literacy face long-term issues that can have a significant negative impact on their financial security. In the event of a financial emergency, the average Indian has no more savings than three months' worth. Over the past few years, there has been a decline in the overall domestic savings rate, primarily as a result of higher consumer expenditure (Nayak, 2012). Furthermore, taking credit has become more common, particularly when it comes to consumption. There is a greater reliance on unofficial sources of finance, and personal debt has always existed.

The Reserve Bank of India (RBI) has been making a concerted effort to raise the nation's level of financial literacy. The OECD's stated goal is to help consumers get the knowledge and self-assurance they need to make better decisions, know where to find support, and take other practical measures to enhance their financial well-being by increasing their awareness of financial risks and possibilities (OECD, 2005). RBI created Financial Literacy and Counseling Centers (FLCC) to provide consumers with the knowledge and resources they need to make better credit decisions. On the other hand, the RBI survey reveals that people are not very responsive to these centers. Additionally, the centers' teaching resources don't really go beyond the advertising materials specific banks provide (Nayak, 2012). Financial education programs should focus on areas where financial competence is poor, as indicated by data on existing levels of financial understanding. Therefore, the degree of financial literacy should be a top concern for nations looking to effectively impart financial education and assess its effects at the village level. Policymakers should be able to determine demand areas for different financial literacy features and prioritize which groups of individuals most require assistance by using a number of dimension exercises(Atkinson & Messy, 2012).

A person's seeming control over their financial choices and decisions is acknowledged by financial literacy. Individuals won't exhibit established financial behaviors unless they believe they are valuable, which exposes their mindset and gives them power over these behaviors. Therefore, one may claim that, despite having financial information, an individual's attitude—which serves as the study's foundation—will determine their actual financial conduct.

III. STUDY OBJECTIVES

The following objectives form the foundation of this study:

- To ascertain the college students' degree of financial knowledge, attitude, and behavior.
- To ascertain the relationship between college students' financial behavior, attitude, and knowledge.
- To investigate how environmental influences affect students' financial literacy.

IV. RESEARCH METHODOLOGY

The degree of financial literacy among Gujarati college students is investigated using an exploratory study approach. Gujarati college students make up the researcher population. The researchers gathered 800 student responses from different parts of Gujarat using the practical non-probability sampling technique. The OECD's Measuring Financial Literacy questionnaire served as the basis for the poll. The survey was divided into five sections. The demographic factors in the first section include parent's income, education, marital status, age, gender, and field of study. Ten questions about financial attitudes are included in the second section to assess the financial attitude variable using a Likert scale. Eight questions about financial behavior are included in the third section to assess financial behavior variables on a Likert scale. Ten financial knowledge items were introduced in

the fourth section to assess the financial knowledge variable. Net worth, interest rates, checks, loan and lease agreements, credit bureaus, and the time value of money are just a few of the topics covered in the questions. Each question is scored based on its % corrected score; a correct response receives one mark, while an incorrect response receives zero. The result is converted into a percentage of the correct response. Environmental factors that impact students' financial literacy or awareness are covered in the last section.

A. Hypothesis of the study

A researcher is studying hypothesis as, H_{0x} as Null hypothesis for x variable and H_{1x} as an alternative hypothesis for x variable.

- 1 H_{01} : There is no significant association between financial knowledge, financial attitude & financial behavior
- H_{11} : There is a significant association between financial knowledge, financial attitude & financial behavior
- 3 H_{02} : There is no significant association between financial knowledge & environmental factors.
- H_{12} : There is a significant association between financial knowledge & environmental factors.

B. Technique of Data Analysis

For finding correlations among variables, various methods are used. In this case, variables are qualitative as well as quantitative hence Karl Pearson correlation coefficient and Spearman Rank correlation coefficient are used at 1% level of significance test.

V. DATA PRESENTATION AND ANALYSIS

Total 800 responses were gathered by the researcher from different parts of Gujarat, India. Forty-seven of these surveys were not completed. As a result, only 753 surveys were analysed. Of the pupils surveyed, 42% are female and 58% are male. Seventy-four percent of the pupils are between the ages of 19 and 22. 23.1 percent of students are in the scientific stream, while 64.1% of students are in the commerce stream. Ninety-three percent of students are single. 51.2% of students' parents earn between Rs. 100,000 and Rs. 500000, while 38.5% of students' parents earn less than Rs. 1,00,000. Just 7.7% of pupils have parents who earn more than Rs. 10,000,000. As a result, the majority of pupils come from lower-income families.

The results for financial behavior (FB), financial attitude (FA), financial knowledge (FK), and the impact of the environment on financial literacy (IFL) are displayed in Table 1 below. The average financial behavior of the students is 3.41, which is greater than 2.5, with a standard deviation of 0.44. It is nearly equal to the average influence environment on financial understanding or financial literacy (IFL), with a standard deviation of 0.67 and an average score of 3.86 out of 5. The average financial attitude of students is 3.29 on a 5-point scale, with a standard deviation of 0.57. With a standard deviation of 14.95%, the average score for students' financial literacy is 54.97%.

Among the variables that show correlation with each other are average financial behavior (FB_Avg), average influence on financial literacy (IFL_avg), percentage of financial knowledge (FK_Percentage), and average financial attitude (FA_Avg). Correlation is calculated using the Karl Pearson and Spearman Rank methods. At the 1% significance level, there is a relationship between financial activity and knowledge, as indicated by the correlation value of 0.315. Students' behaviour is influenced by their knowledge, and there is a partial positive correlation between the two factors. There is a 0.348 correlation between financial behaviour and financial attitude, meaning that at the 1% level of significance, there is a relationship between the two. A student's attitude towards money is influenced by his financial behaviour. Both variables are partially positively correlated. Students' financial knowledge has a positive correlation on environmental factors that influence their financial knowledge. Table 2, there is a significant association between environmental factors and financial knowledge.

TABLE I
DESCRIPTIVE ANALYSIS

		FB	IFL	FK	FA
N	Valid	753	753	753	753
	Missing Values	0	0	0	0

Mean	3.41	3.86	54.97	3.29
S.E.M	0.04	0.046	1.02	0.03
S.D	0.44	0.67	14.95	0.37

TABLE II
CORRELATION MATRIX

		FA	FB	IFL	FK
FA	Correlation Coefficient	1	0.348 **	0.202 **	0.159 **
	Significant (2-tailed)		0.000	0.001	0.008
	N	753	753	753	753
FB	Correlation Coefficient	0.348 **	1	0.159 **	0.315 **
	Sig. (2-tailed)	0.000		0.008	0.000
	N	753	753	753	753
IFL	Correlation Coefficient	0.202 **	0.159 **	1	0.246 **
	Sig. (2-tailed)	0.001	0.008		0.000
	N	753	753	753	753
FK	Correlation Coefficient	0.159 **	0.315 **	0.246 **	1
	Sig. (2-tailed)	0.008	0.000	0.000	
	N	753	753	753	753

**. At the two-tailed 1% level, the correlation coefficient is significant.

The influence of different environmental elements on pupils, such as parents, friends, relatives, media, employment, life experience, and the internet, is depicted in Chart 1. Additionally, researchers find that the greatest influences on learning about financial literacy are parents and life experience; friends and financial planners or counselors have a less significant impact.

VI. LIMITATION OF THE STUDY

This study has the following limitations:

- It only covers Gujarat, which represents only one state of Indian college students.
- There are drawbacks to utilizing questionnaires to gather primary data for research.
- Qualitative traits including knowledge, attitude, and financial behavior are used by researchers. Quantifying the qualitative variable presents a challenge as well.
- The questionnaire used in this study was developed using the financial literacy measurement guidelines supplied by the OECD's International Network on Financial Education. Each nation or organization has its own restrictions.

VII. CONCLUSION

Financial literacy, according to the study, is the result of the interaction between financial behaviour, financial attitude, and financial knowledge. Students generally behave, know, and think about money in subpar ways. The study found that financial

behavior, financial attitude, and financial knowledge combine to produce financial literacy. In general, students act, understand, and think about money in poor ways. One's attitude about money is positively impacted by their financial behavior, and knowledge and financial behavior are positively correlated. Financial awareness is most influenced by environmental factors such as parents and life experience; friends and financial planners have less of an effect. The attitudes of students toward money and their spending habits are positively impacted by an average level of financial literacy.

VIII. THE IMPLICATIONS OF STUDENTS' FIN LIT FOR ACADEMIC AND MANAGERS

The academic and managerial implications of students' financial literacy are significant:

A. Academic Implications:

1. Improved Educational Outcomes: Students who are more financially literate may perform better academically because they may grasp personal finance concepts better and be able to apply them to practical scenarios.
2. Curriculum Enhancement: To guarantee that students gain the necessary financial abilities, educational institutions may need to improve their curricula by adding courses or modules on financial literacy.
3. Research Opportunities: Research on financial literacy can result in scholarly investigations that advance our understanding of the ways in which financial literacy affects several facets of students' lives.

B. Managerial Implications:

1. Employee Financial Wellness: Financially literate workers are more productive, make better financial decisions, and experience less financial stress—all of which are advantages for organizations.
2. Financial Literacy Programs: Employers can improve employee financial wellness by implementing financial literacy training, which can boost employee retention and job satisfaction.
3. Investment in Training: To increase financial literacy among employees and students, firms and educational institutions may need to make investments in resources and training.
4. Risk Mitigation: People who are financially literate are better able to handle their own finances and make wise decisions, which lowers the possibility that they may experience financial troubles that could impair their performance at school or at work.

In conclusion, raising students' financial literacy benefits businesses and educational institutions alike by producing better-educated people who know how to handle their money better.

REFERENCES

- [1] ANZ "Survey of Adult Financial Literacy in Australia. Australia and New Zealand Banking Group Ltd (AU)" (2015)
- [2] ASSOCHAM. "Opportunities & Challenge - Indian Financial market - Rodmap 2020" 2010 PwC.
- [3] Atkinson, A., & Messy, F. "Measuring financial literacy: Results of the OECD / International Network on Financial Education (INFE) Pilot Study" OCED Working Paper on Finance, Insurance and Private pensions, 2012.
- [4] C R Kothari "Research Methodology (3rd Edition ed.). New Delhi: NEW AGE INTERNATIONAL (P) LIMITED" (2012)
- [5] Howlett, M., Hogarth, J. M., & Beverly, "Household financial management: The connection between knowledge and behavior" Federal Reserve Bulletin, 89, 2003pp. 309-322.
- [6] <https://www.ibef.org/>. (2019, March). Retrieved April 9, 2019, from IBEF: <https://www.ibef.org/industry/banking-india.aspx>
- [7] Huston, S. J. Measuring Financial Literacy. THE JOURNAL OF CONSUMER AFFAIRS, 2010, pp. 296-316.

[8] Nayak, U. "Financial inclusion can make little headway without efforts to further financial literacy." Business Line,(2012).

[9] OCED. Importance of financial education or Financial literacy, 2006.

[10] OECD. (2005). "Recommendation of the council on principles and good practices for financial education and awareness", Retrieved 2016, from Retrieved from <http://webnet.oecd.org/oecdacts/Instruments>ShowInstrumentView.aspx?InstrumentID=77&Lang=en&Book=False>.

[11] OECD. "Recommendation of the council on principles and good practices for financial education and awareness". Retrieved 2016, from <http://webnet.oecd.org/2009>.

[12] RBI.Financial literacy and credit counseling centers. Retrieved 2016, from <http://rbi.org.in/scripts/PublicationDraftReports.aspx?ID=526>: www.rbi.org.in

[13] RBI. (n.d.). RBI. Retrieved 02 25, from <https://rbi.org.in/>: <https://rbi.org.in/financialeducation/home.aspx>, 2019

[14] Reddy, D. Y. "The Role of Financial Education: The Indian Case'. Organization for Economic Cooperation and Development (OECD) and co-hosted by Pension Fund Regulatory and Development Authority" New Delhi: RBI, 2006

[15] Sobhesh Kumar Agarawalla, S. K. "Financial Literacy among working young in urban India" IIM Ahmedabad, 2013.

[16] Sridhar, G. N. (2018, 11 05). <https://www.thehindubusinessline.com/>. Retrieved 2 25, from <https://www.thehindubusinessline.com/money-and-banking/two-years-after-note-ban-digital-transactions-show-robust-growth/article25429396.ece>: <https://www.thehindubusinessline.com/money-and-banking/two-years-after-note-ban-digital-transactions-show-robust-growth/article25429396.ece>, 2019

[17] Wachira, M. I., & Kihiu, E. N."Impact of financial literacy on access to financial services in Kenya. International Journal of Business and Social Science, 2012, 12 (19), pp. 42-50.

[18] Atkinson, A., & Messy, F. (2012). Measuring financial literacy: Results of the OECD/INFE pilot study. OECD Publishing. <https://doi.org/10.1787/5k9csfs90fr4-en>

[19] Lusardi, A., & Mitchell, O. S. (2014). The economic importance of financial literacy: Theory and evidence. *Journal of Economic Literature*, 52(1), 5–44. <https://doi.org/10.1257/jel.52.1.5>

[20] Remund, D. L. (2010). Financial literacy explicated: The case for a clearer definition in an increasingly complex economy. *Journal of Consumer Affairs*, 44(2), 276–295. <https://doi.org/10.1111/j.1745-6606.2010.01169.x>

[21] Reserve Bank of India. (2021). Financial literacy and inclusion initiatives. Retrieved from <https://www.rbi.org.in>

[22] World Bank. (2014). Global Financial Development Report 2014: Financial inclusion. World Bank Publications. <https://doi.org/10.1596/978-0-8213-9985-9>

[23] Agarwalla, S. K., Barua, S., Jacob, J., & Varma, J. R. (2015). *Financial literacy among working young in urban India*. World Development, 67, 101-109. <https://doi.org/10.1016/j.worlddev.2014.10.006>

[24] Bhushan, P. (2014). *Insights into awareness level and investment behavior of salaried individuals towards financial products*. International Journal of Engineering, Business, and Enterprise Applications, 8(1), 53-57.

[25] Brown, M., & Graf, R. (2013). *Financial literacy and retirement planning in Switzerland*. Numeracy, 6(2), Article 6. <https://doi.org/10.5038/1936-4660.6.2.6>

[26] Disney, R., & Gathergood, J. (2013). *Financial literacy and consumer credit portfolios*. Journal of Banking & Finance, 37(7), 2246-2254. <https://doi.org/10.1016/j.jbankfin.2013.01.013>

[27] Gupta, K. P. (2015). *Financial inclusion: An Indian perspective*. Productivity, 56(2), 116-122.

[28] Hussain, J., Mahmood, S., & Scott, J. (2018). *Gender, microfinance, and financial literacy: How women's initiatives improve family income in Pakistan*. Journal of International Development, 30(7), 987-1003. <https://doi.org/10.1002/jid.3416>

[29] Jappelli, T., & Padula, M. (2013). *Investment in financial literacy and saving decisions*. Journal of Banking & Finance, 37(8), 2779-2792. <https://doi.org/10.1016/j.jbankfin.2013.03.019>

[30] Klapper, L., Lusardi, A., & van Oudheusden, P. (2015). *Financial literacy around the world: Insights from the Standard & Poor's Ratings Services Global Financial Literacy Survey*. Standard & Poor's.

[31] Lusardi, A., & Mitchell, O. S. (2014). *The economic importance of financial literacy: Theory and evidence*. Journal of Economic Literature, 52(1), 5-44. <https://doi.org/10.1257/jel.52.1.5>

[32] Lusardi, A., & Tufano, P. (2015). *Debt literacy, financial experiences, and overindebtedness*. Journal of Pension Economics & Finance, 14(4), 332-368. <https://doi.org/10.1017/S1474747215000232>

[33] Mahdzan, N. S., & Victorian, S. M. (2013). *The determinants of life insurance demand: A focus on saving motives and financial literacy*. Asian Social Science, 9(5), 274. <https://doi.org/10.5539/ass.v9n5p274>

[34] OECD. (2014). *Measuring financial literacy: Results of the OECD/INFE pilot study*. OECD Publishing. <https://doi.org/10.1787/9789264017260-en>

[35] Prusty, S. (2011). *Financial literacy and its implications on saving behavior: A study of individuals in India*. Indian Journal of Economics and Development, 7(3), 212-221.

[36] Sekita, S. (2013). *Financial literacy and retirement planning in Japan*. Journal of Pension Economics & Finance, 12(4), 411-442. <https://doi.org/10.1017/S1474747213000103>

[37] Taft, M. K., Hosein, Z. Z., Mehrizi, S. M. T., & Roshan, A. (2013). *The relation between financial literacy, financial well-being, and financial concerns*. International Journal of Business and Management, 8(11), 63-75.

[38] Watanapongvanich, S., & Gillespie, J. (2021). *Financial literacy and rational decision-making in Thailand*. Asia-Pacific Journal of Business Administration, 13(4), 421-435.

[39] Waheed, A., & Mansoor, A. (2020). *Financial literacy, risk perception, and investment decisions in Pakistan*. Research Journal of Finance and Accounting, 11(4), 20-29.

[40] World Bank. (2017). *Financial education programs in developing countries: Evaluation and impacts*. Washington, DC: World Bank Publications.

[41] Xia, N., Wang, Y., & Gu, M. (2014). *The influence of financial literacy on stock market participation in China*. China Economic Review, 30, 39-54. <https://doi.org/10.1016/j.chieco.2014.05.002>

[42] Yun, Y., & Yun, M. (2018). *Financial literacy and its impact on rational decision-making among students*. Journal of Education for Business, 93(2), 52-62.

A Review of Studies Examining Machine Learning Techniques

Kiranben V. Patel

Swami Sachchidanand Polytechnic College,
Sankalchand Patel University, Visnagar, Gujarat, India- 384315

kvpatel.sspc@spu.ac.in

Abstract: A thorough analysis of papers pertaining to machine learning techniques (MLT) for a master assessment of programming development is presented in this work. Machine learning is shown that it can reliably produce assessments that are accurate in this new era. When an AI framework prepares a set of finished projects, it successfully "realizes" how to judge. The primary objective and commitment of the audit is to support master assessment, such as to facilitate other scientists' consideration of employing AI approaches for extensive master assessments. The most popular AI methodssuch as genetic programming, rule enlisting, neural networks, case-based reasoning, grouping and relapse trees, and hereditary computation, are offered in this study to evaluate programming ability. Every time we carried out an examination, we discovered the impacts of different AI.

Keywords: Machine learning methods, rule induction, genetic algorithms, neural networks, classification and regression trees, genetic programming, and case-based reasoning.

I. INTRODUCTION

The awful presentation results generated by quantitative Models of assessment have utterly overtaken the assessment sector in the past 10 years. Due to their incapacity Lack of thinking skills, failure to handle information that is clearly presented, inability to adjust to focuses on missing information, and Information dissemination focuses

there has been an increase in study employing non-traditional methodologies such as machine learning methods. Actually, artificial intelligence (AI) is the study of computer techniques for improving performance through information security automation [18]. A great deal of space-explicit knowledge is required for master execution, and information design has developed several AI master frameworks that are currently in widespread usage in industry. The two main types of AI are deductive and inductive.Deductive learning draws new information from preexisting knowledge.The following is how this document is structured: Our study's second section examines how neural networks apply AI. the launch of CBR with region 3 application. An other effective technique for learning is the CART.

that is displayed in size 4. Another recruitment of a worldview rule occurs in section 5. The effects of genetic programming and computation in zone 6. The conversation on different AI strategies, objectives, and implications for area 8 takes place in room 7. Over the past ten years, the estimation field has been overrun by the subpar performance outcomes generated by statistical estimating methods.

II. NEURAL NETWORK

The goal of neural organizations is to provide an efficient method for classifying and describing designs (8,15). Neural learning comes in two main forms: Calculations that categorize designs based on their intrinsic properties are best suited for unaided neural measurements, especially guided and solo ones. Three essential methods for learning on your own are as follows:

- (a) Learning through Competition
- (c) Highlight maps that organize themselves
- (c) Networks of Artists

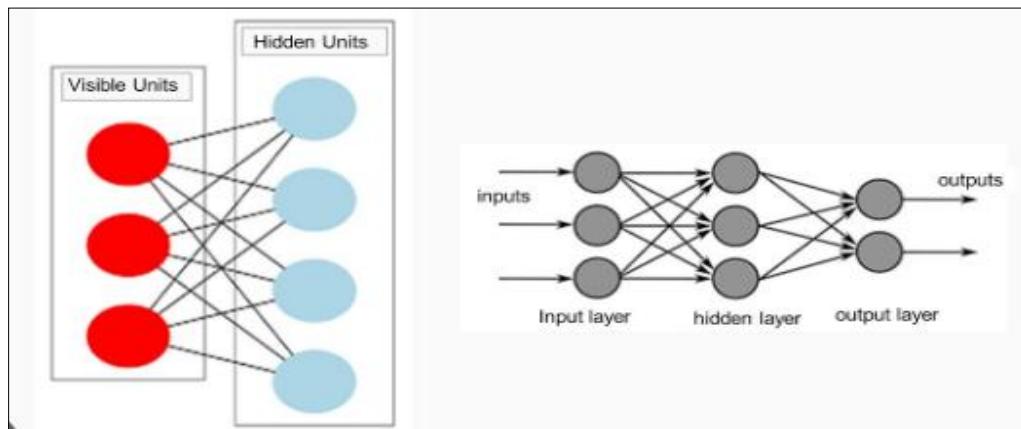


Fig.1. The Architecture of Neural Network

The "managed learning" viewpoint is the second one. The purpose of these networks is to approximate fixed/interruptible capacities in a generic manner. As a result, they can be applied in situations where we need to approximate the input-yield guide and have some knowledge about it. The organization is prepared using a large amount of input-output data. After the organization is ready, it may take in from the information space, any input (in the guide) and produce a yield, which is the anticipated outcome of the Our planning roughly estimated.

The Log-Sigmoid capacity, as explained in [9], is the action work that is employed. This can be stated as follows:

$$\Phi(a) = \frac{1}{1 - e^{-a}}$$

Where

$$a = \sum_{i=1}^N Wx$$

Synaptic weights are represented by Ws, and previous layer yields by xs. The organization's contribution is denoted by x's for the hidden layer, whereas x's compare to the hidden layer's outcome. The company is ready to apply the calculation of blunderback proliferation [9]. [9] states that the weight update rule may be stated as follows:

$$\Delta W_{ji}(n) = \alpha \Delta W_{ji}(n-1) + \eta \delta_j(n) y_i(n)$$

where In this instance "k" stands for learning rate, "w" for corrected synaptic weight, "i" for neuron j's yield at focus n, "j" for neighborhood angle, and "y" for capacity signal at focus n., and "E" is frequently a positive number. Based on test findings, we assume that neural organization can be applied to other areas of programming, such as exertion, size, cost, and test prediction [1,7,12,13]. In any case, the specific use for which the experiment is intended will determine the maximum rate of errors that can be tolerated. The amount of space that the experiment boundaries travel will determine the design and preparatory calculations. Various frameworks, such as complex mechanical program recreation, climate and financial estimation, and Topographical analysis, are used to address unresolved.

III. CASE-BASED REASONING

The process of solving new problems by modifying the solutions from previously solved problems is known as case-based reasoning. We attempt to address the unique challenges in those circumstances by using the performance occurrences from previously solved problems. A case is any such arrangement that we have at our disposal.

A. CBR Process

These four cycles are part of a CBR measure.

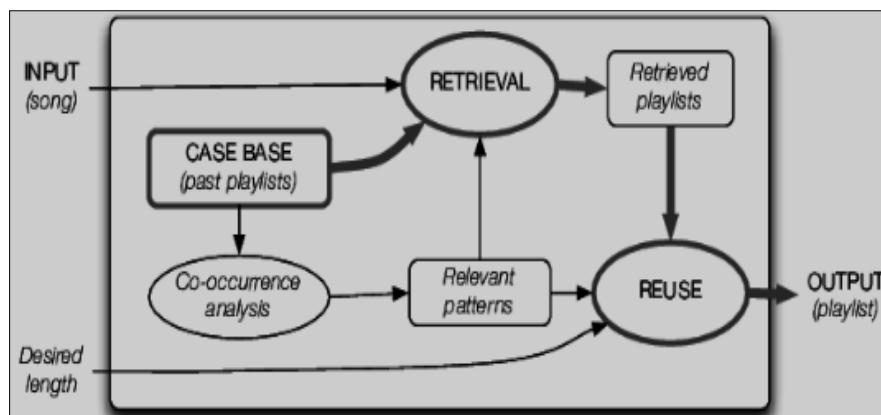


Fig. 3. The General CBR Process

- One problem is characterized by its initial description. A number of earlier issues have been recovered to create this new one. A new problem to be addressed is then created by reusing this recovered problem and joining it to the most recent one. Simply put, this problem to be solved is a suggested fix for the issue it describes. As soon as this structure is identified, it is essentially used to test the current issue. "Amendment of the problem" is the term used to describe this test cycle. This marks the beginning of the "pause," during which we retain important experience for future use and update the case base with new scientific cases or by altering some current problems. involves four steps:
 - Recover
 - Reuse
 - Examine again
 - hold

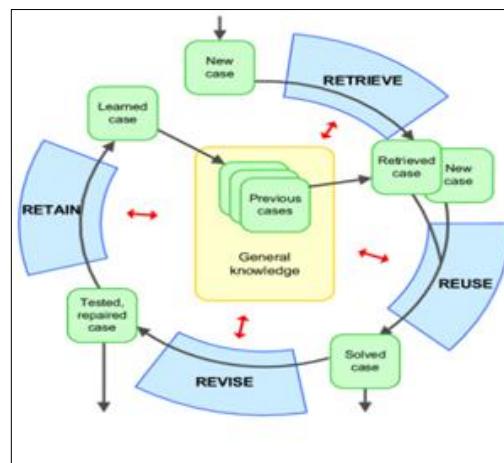


Fig. 4 Provide a brief example of the CBR Cycle

The image confirms all of the CBR measures and demonstrates the importance of general information in CBR. Instead of explicit information as demonstrated by the cases, the evidence that is now accessible points to subliminal spatial information. For example, a model of the life structures and the relaxed links among neurotic states may be utilized to determine the overall information needed by the CBR framework when diagnosing a person by recovering and repeating a prior patient.

B. Case-Based Reasoning Fundamentals

1) Case Retrieval

This specific advance's subtasks involve identifying highlights, organizing, looking for, and choosing the appropriate ones to be completed in a particular order. Numerous pertinent issue descriptions will be discovered by a reputable proving project. The determination task will then choose the best match after The examples that are comparable to the new case are restored through performance coordination.. Typical case recovery methods include the following:

Nearest neighbor (NN): Due to the coordination of the weighted number of highlighted cases, the NN technique compares the similarity using the new information situation of put-away instances.

Induction: By determining which highlights perform best in individual situations, To put the samples together, the induction process creates a selection tree structure.

Knowledge: We utilize the knowledge to an enrollment cycle that is based on an actual special scenario, including any significant points that are known or believed to be significant. For vast case bases, informative information is not always easily accessible, hence this methodology is frequently combined with other processes.

Restores: Typically, the pursuit space is restricted to a subset of the whole case base by employing all cases that fall under particular rules before turning to other techniques like the closest neighbor.

2) Case Reuse

The procedure of recovering the resolved case from the recovered point is known as case reuse. After examining the distinctions between the new case and the earlier cases, it decides which aspects of the recovered case can be applied to the new case. In order to establish a response for the new topics, CBR is based on the notion of a partnershi [5].

3) Copy

We reproduce the framework of the earlier examples and apply it as a solution for the new prospects in the small reuse cases. As it turns out, a lot of frameworks consider how these two points differ from one another and employ the transform cycle to organize the subsequent arrangement according to those differences.

4) Adaptation

In the cycle of transformation, primary and derivative transformations can be distinguished. The stored arrangement in the case is directly subjected to the primary transformation rules. Reusing prior case arrangements is one example. Derivative conversion The method that gave rise to the answer for one problem is applied again. The new case solution is constructed by applying certain change limits rather than directly using the prior format in the primary variation. Additionally, this kind of change is known as breakthrough transformation. For the preceding problem, we solve it using the prior method or computation [17].

5) Case Revision

The structure should be tested when the new problem has been solved using the earlier cases. We should try to determine whether structure is correct. Should the testing be successful, we ought to arrange the meeting. If not, the case arrangement needs to be updated with specific space knowledge.

6) Case Retainment -Learning (CRL)

After being tried and resolved, the new issue's structure could be saved as clear information in the present field. We call this cycle Case Retainment Learning (CRL).

- Selecting the data to be stored
- the structure in which to keep it
- The selection of the case storage method for recovery from comparable issues
- Selecting the method for integrating the new subject into the memory structure

7) Case-Based Learning

It is also acknowledged that case-based thinking is a branch of artificial intelligence. As a result, case-based thinking encompasses more than just a certain method of thinking, regardless of how the instances are obtained; it also refers to an AI perspective that reinforces learning through case base updates following a problem's resolution. Critical thinking naturally leads to learning in CBR. Once a problem has been satisfactorily addressed, the knowledge acquired can be applied to future problems of a similar nature.

IV. CLASSIFICATION AND REGRESSION TREES (CART)

1) CART Introduction

CART is among the most effective AI techniques. The main distinction between CART and more AI techniques is that it doesn't necessitate almost any expert input. This contrasts with other procedures that necessitate in-depth expert involvement, interval result analysis, and a shift in methodology.

Prior to delving into the specifics of CART, let's clarify the three categories of components and the two categories of factors that are crucial for explaining grouping and relapse issues:

A. Target variable

It is the target variable whose quality is to be assessed and forecasted by a number of variables. It is comparable to a straight relapse's dependent variable.

B. Predictor variable

A predictor variable is a characteristic that will be utilized to forecast the estimation of the objective variable. In a simple relapse, it is comparable to the free variable.

C. Indicator variable

Although there could be numerous indicator factors, the decision tree analysis should only use one indicator variable. There is a "weight variable" that you can set. If a weight variable is displayed, which is unusual, it must be a numerical (stable) variable with a quality of at least zero. A column's weight in your dataset is determined by the estimation of a weight variable. There are primarily two categories of constant factors.

Continuous factors

A constant variable can have numerical values such as "1, 2," "3.14," "5," and so on. The values' whole range is crucial; for instance, an estimate of 2 indicates that the size of "1" is doubled. Persistent factors include things like height and pay, age and the chance of disease, weight and circulatory strain, etc. As required, several projects employ "monotonic" or constant factors.

Types of categorical factors

The values of all-out elements are not numbers but rather marks. "Ostensible" factors are what some projects call straight-out factors. For instance, a sexual orientation unmitigated variable may have values such as "1 for male" and "2 for female." A parametric, quantifiable technique called CART was created to examine grouping issues from continuous and all-outward components (24, 25). In cases when the An ordered tree is produced by CART, and the dependent variable is continuous. Using CART, a relapse tree is produced when the dependant variable remains unchanged.

2) Binary Recursive Partitioning

Think about the challenge of choosing the ideal cutting-edge laryngoscope size and type for pediatric CART patients. Out of three potential attributes (Miller 0, Wis-Hipple 1, and Mac 2), the outcome variable is the best cutting edge for each patient (managed by a qualified pediatric aviation route specialist). Estimates of pharyngeal height and neck length serve as the two indication parameters. A Miller 0 works best for the tiniest patients, a Wis-Hipple 1 for the medium-sized patients, and a Mac 2 for the largest patients. In essence, CART is utilized to circumvent the drawbacks of relapse prevention techniques. One way to conceptualize a CART investigation is as a twofold repetition of recurrence.

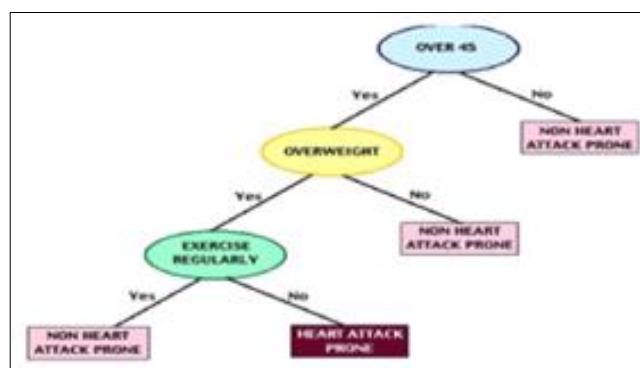


Fig. 5. The Cart Analysis Tree

3) CART Analysis

A conventional information examination method is not what CART investigation is. In the age of clinical choice standards, it is appropriate.

Four primary steps make up truck analysis:

Tree working is the process of assembling a tree using a recursive parsing of hubs, each of which results in a hub being demoted to an expected class since the choice cost grid and the hub are where the appropriation or courses occurs.

2. Put a stop to the tree-building process that produced a "maximal" tree that most likely overfits the learning dataset's data.
3. Tree "pruning," in which a group of less complex and simpler trees are created by chopping off increasingly important hubs.
4. Finding the ideal tree, in which the data-matching tree

V. RULE INDUCTION

Another effective AI method is Rule Induction. The standard inductive rules are far simpler to comprehend than a well-prepared neural network or a recurrence model, which makes it easier. This perspective makes use of comparative information structures, condition-activity practices, and option trees. Using an all-or-no coordinate cycle, the exhibition component here either discovers the major rule whose conditions coordinate the case or organizes instances down the branches of the decision tree. Class or anticipation data is kept sides of the tree leaves in the activity. When learning computation in the conventional inductive approach, an eager search over the region of a decision tree or rule set is naturally triggered. This search usually employs a fact-evaluation capability to choose ascribes for fusing into the information structure.

A. Rule learning measure

A collection of characterisation rules is used to forecast future issue that hasn't been introduced to the learner yet when a set of preparation models, such as examples which grouping is used for, are provided. When recognizing these instances, it is important to take note of the tendencies imposed by dialects, such as limitations placed on the presentation of information. Additionally, we must consider the language that is utilized to communicate the collection of incited rules. Classifying instances into positive and negative categories would be a comparable characterisation problem.

B. Propositional Rule Learning

When the estimates of the various credits do not strongly correlate with one another, propositional rules learning frameworks can be helpful. a variety of instances with familiar configurations in which estimations of a set of fixed characteristics embody each event. Both a fixed concept of attributes and the acceptance of actual numbers as qualities are possible for the credits. Currently, we create a set of IF-THIN rules for these situations. Speculation on the return on learning is discussed by a set of guidelines. Upon the principles' described, we assess the processes' accuracy and use them to study their quality by applying them to real-world problems. Information that is readily available in propositional learning typically has a single record format with lines, or models and sections are prepared.

C. Social Rule Learning/Inductive Rationale Programming (ILP)

A database structure for social information is present when data is kept in several tables. To apply traditional information mining techniques in these situations, the data must be converted to a single table. Summing up the content of the various tables in a few rundown credits in a principal table and selecting one table as the primary table to learn from is the most popular information change technique. Such single table modifications, however, may result in the loss of some data and the synopsis may also include outdated rarity that could produce unsuitable information mining results. Thus, it is best to employ information mining tools that can handle multiple social information sources and to keep information largely unaltered.

D. A guide to show Rule Induction

Case Study (Making Credit Decisions)

Usually, credit institutions utilize surveys to gather information on credit applicants, which they then use to determine whether to grant credit. For a while now, this cycle had been partially automated. Records, however, revealed that the experts' accuracy in forecasting whether those marginal candidates would lose their credits was about 50 American Express UK experimented with AI techniques to improve the pick cycle because of this conviction. Michie's group started with 1014 prep instances and 18

interesting a scribes (such age and years of company experience) using an enlisting process. After that, they created a selection tree with about 20 hubs and 10 of the initial highlights, which resulted in 70% of these marginal candidates receiving accurate projections.

Then, using about 20 hubs and 10 of the initial highlights, they created a selection tree that accurately predicted 70% of these marginal possibilities.

VI. GENETIC ALGORITHM AND GENETIC PROGRAMMING

A very recent idea is the hereditary approach to AI. GP and hospitable calculations are both examples of transformational processing, a general term for critical thinking methods that rely on natural benchmarks of advancement, such a consensus. The terminology used in heritable computations is based on common hereditary traits; Examples include persons (of people), chromosomes (or people or spot strings), and rates (or bits).

Three primary cycles form the basis of the genetic calculation approach: hybridization, change, and, more importantly, human decision. The first step is to create a randomly chosen population by assembling numerous individual situations. In order to predict future humans, Calculations of heritability are based on Darwin's "natural selection" theory. After a decision is made, it is necessary to define new humans.

John Koza put forth a genetic algorithm (GP) balance in 1992. GP prioritizes PC program improvement over working boundaries. Characteristic choice informs the design of GP computations. We refer to these computations as "capacity trees." GP holds and permits the creation of "the fitter people" while discarding others. depends on the optimal arrangements being made by a group of people. GP functions similarly to heritable computation. Additionally, it adheres to standard development criteria to offer a response that either enhances or minimizes wellness work. GP and GA are different in that GP uses a series of whole numbers to determine the order of a particular problem, while a GP cycle seeks to produce a PC.

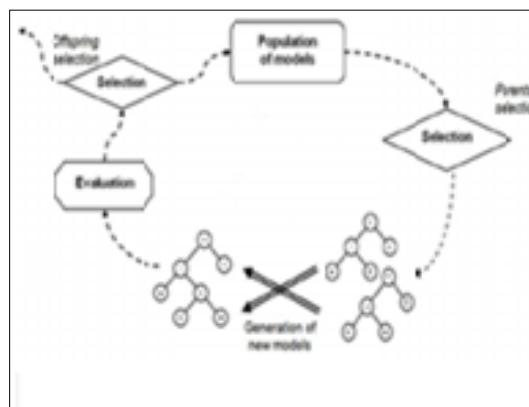


Fig. 6. Genetics Promming (GP)Cycle

TABLE I
THEME, OPPORTUNITIES AND LIMITATIONS

Theme	Opportunities	Limitations
Information availability and access.	Research Real-world problem	Distraction Undeveloped information literacy.

Sharing And Collaboration	Collaborative education and teamwork	No ownership of Technology /Shared resources.
Novelty	New learning tool dynamic learning environment	Absence of Instruction Traditional learning time is distracted by a rapidly "outdated" approach to technology.
Learning Style and Technology Design	Design components incorporate additional kinesthetic, visual, and auditory learning modes.	Keyboard, size, app, and availability are design aspects that have a negative impact on learning.
Usability and Convenience	Utilization ease Different apps with intuitive designs.	Issues with connectivity Stop learning. Applications that are unstable or unreliable affect learning.

Describe Various Mobile Learning

For instance, logical analysis, which encompasses natural growth, benefits from the application of GA and GP. Rule-based processes and the CART study may be useful in a number of financial applications. A more recent application of CBR is in the development of help desk systems. Applications for NN include risk management and sales forecasting.

VII. CONCLUSION AND FUTURE DIRECTION

This audit's main goal is to examine the many machine learning approaches that are applied in software design domains like as size, cost, and exertion assessment. The article also offers a thorough examination of the various approaches based on their limits, user preferences, and application. We cannot conclude that one strategy is superior to another after examining this relative collection of methods. Depending on the focal points, each technique is effective in a distinct area and has its own application location. Thus, execution and efficiency are enhanced by keeping each of these tactics in mind as well as the primary center's limits. Additionally, our data demonstrates that there is no one best way to approach machine learning. A deeper understanding is desperately needed.

REFERENCES

- [1] Agarwal K.K., Yogesh Singh, A. Kaur, O.P.Sangwan "A NeuralNet-Based Approach to TestOracle" ACMSIGSOFT Vol.29 No.4, May, 2004.
- [2] Agnar Aamod, EnricPlaza "Foundational Issues, Methodological Variations, System approaches." AlCom-Man-made consciousness Communications, IOSPress Vol.7:1, pp.39-59
- [3] Gadde, Sai "Artificial Intelligence The Future of Radiology. International Journal for Research in Applied Science and Engineering Technology", 2020, 8. 10.22214/ijraset.2020.6043.
- [4] Chris Bozzuto."Machine Learning: Genetic Programming." February 2002.
- [5] Dr. Bonnie Moris, West Virginia University "Case-Based Reasoning" AI/ES Update vol.5 no. 1 Fall 1995
- [6] Eleazar Eskin and Eric Siegel. "Genetic Programming Applied to Othello: Presenting Understudies to Machine Learning Research" available at <http://www.cs.columbia.edu/~evs/papers/sigcsepaper.ps>
- [7] Gavin R. Finnie and Gerhard E. Wittig, "Machine Learning Tools for Software Development Effort Estimation", IEEE Transaction on Software Engineering, 1996.
- [8] Haykin S., "Neural Networks, A Extensive Foundation," Prentice Hall India, 2003.

- [9] Howden William E. and Eichhorst Peter. Demonstrating properties of programs from program traces. In Tutorial: Software Testing and Validation Techniques: EMiller and W.E. Howden(eds.0.New York: IEEE Computer Society Press, 1978HsinchunChen."AI for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Calculation" available at <http://ai.bpa.arizona.edu/papers/mlir93/mlir93.html> #318.
- [10] Ian Watson & Farhi Marir. "Case-Based Reasoning: A Review" available at <http://www.aicbr.org/classroom/cbr-review.html>.
- [11] Gadde,Sai&Kalli,Venkata.(2020).IJARCCEA "Qualitative Comparison of Techniques for Student Modelling in Intelligent Tutoring Systems" 9. 75-82. 10.17148/IJARCCE.2020.91113.
- [12] Krishnamoorthy Srinivasan and Douglas Fisher, "Machine Learning Approaches to Estimating Software Development Effort", IEEE Transaction on Software Engineering, 1995.
- [13] KohonenT., "Self-OrganizingMaps", 2nd Edition, Berlin: Springer- Verlag, 1997.
- [14] Mayr HauserA.von, Anderson C. and Mraz R., "Using A Neural Network to Predict Test Case Effectiveness" – Procs IEEE Aerospace Applications Conference, Snowmass, CO, Feb.1995. Yogesh Singh, Pradeep Kumar Bhatia& Om Prakash Sangwan International Journal of Computer Science and Security, Volume (1): Issue (1) 84
- [15] Martin Atzmueller, Joachim Baumeister, Frank Puppe, Wenqi Shi, and John A. Barnden "Case-Based Approaches for Multiple Disorders" Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society, 2004.
- [16] Nahid Amani, Mahmood Fathi, and Mahdi Rehghan. "A Case-Based Reasoning Method for Alarm Filtering and Correlation in Telecommunication Networks" available at <http://ieeexplore.ieee.org/iel5/10384/33117/01557421.pdf?arnumber=1557421>.
- [17] Pat Langley, Stanford and Herbert A. Simon, Pittsburgh."Application of Machine Learning and Rule Induction." available at <http://cll.stanford.edu/~langley/papers/app.cacm.ps>.
- [18] Peter Flach and Nada Lavrac. "Rule Induction" available at www.cs.bris.ac.uk/Teaching/Resources/COMSM0301/materials/RuleInductionSection.pdf.
- [19] RogerJ. Lewis."An Introduction to Classification and Regression Tree (CART) Analysis "Presented at the 2000 Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California.
- [20] Stephen Winkler, Michael Aenzeller, and Stefan Wagner. "Advances in Applying Genetic Programming to Machine Learning, Focusing on Classification Problems" available at <http://www.heuristiclab.com/publications/papers/winkler06c.ps>.
- [21] Susanne Hoche."Active Relational Rule Learning in a Constrained Confidence Rated Boosting Framework" Ph.D. Thesis, Reminisce Friedrich-Wilhelm's Universities Bonn, Germany, December 2004.
- [22] Watson, I.& Gandingan, D."ADistributedCase- Based Reasoning Application for Engineering Sale Support". In, Proc.16thInt.Joint Conf. on Artificial Intelligence (IJCAI-99), Vol.1:pp.600-605, 1999.
- [23] Yisehac Yo Hannes, John Hoddinott "Classification and Regression Trees- An Introduction" International Food Policy Research Institute, 1999.
- [24] Yisehac Yohannes, Patrick Webb "Classification and Regression Trees" International Food Policy Research Institute,1999.

A Systematic Review of Transfer Learning Methods for Identifying Lung Disease Sounds

Vishakha Pagi¹, Jayesh Mevada², Mehul S. Patel³, Ankur J. Goswami⁴, Rupal R. Chaudhari⁵

M.Tech Student, Department of Computer Engineering, Sankalchand Patel College of Engineering, Visnagar¹
Department of Computer Engineering, Sankalchand Patel College of Engineering, Visnagar^{2,3,4,5}

vishakhapagi023@gmail.com¹, jmmevada.ce@spcevng.ac.in², mspatel.it@spcevng.ac.in³, ajgoswami.ce@spcevng.ac.in⁴, rrchaudhari.ce@spcevng.ac.in⁵

Abstract: Lung disorders are now the leading cause of death throughout the globe. Despite this, most occurrences of lung illness are only identified at a late stage, when treatment options may be more limited. Technological advances are crucial to today's healthcare delivery system. This state-of-the-art medical research focuses on the value of analyzing lung sounds for the purpose of identifying lung diseases. The capacity to learn new material and use it in novel situations is crucial for patients to make their way through the healthcare system. Several Transfer learning techniques, like ALEXNET, VGGNET, and RESNET, are presented in this paper for classifying lung sounds. In addition to these methods, we will classify lung sound waves using a Transfer learning model that combines a Modified RESNET and a Mel spectrogram. Excellent performance in categorizing lung sounds by these transfer learning models suggests they may one day be employed in the diagnosis of respiratory disorders. In this evaluation, we will look at several Transfer Learning Techniques and talk about their pros and cons. And not even the worst part. To recognize four kinds of breathing noises. In addition, please provide suggestions about how the identification of lung sounds might be improved.

Keywords: Naive Bayes, Decision Tree, Support Vector Machine, Random Forest, Naive Bayes, Artificial Neural Network, AlexNet, VGGNet, RESNET.

I. INTRODUCTION

Lung disease is the third leading killer after heart disease and cancer throughout the world. The World Health Organization (WHO) reports that three million individuals each year lose their lives due to breathing problems. Over 200 million individuals across the world have COPD, and another 235 million have asthma [1,4]. Each year, 8.7 million people are diagnosed with tuberculosis. Pulmonary sound characteristics are reliable predictors of respiratory infections and diseases in this setting. [9,12]. Chronic obstructive pulmonary disease (COPD) and asthma are two of the world's leading killers. While 384 million people have chronic obstructive pulmonary disease (COPD), only 235 million people have asthma. During the duration of an asthma episode, symptoms including wheezing, chest tightness, trouble breathing, and coughing may fluctuate [15]. There are two types of lung sounds, normal and diseased. Two distinct types of breath sounds exist. A person with healthy lungs will make the same noises at each stage of the breathing cycle. It is possible that if you are having breathing problems, you will be able to pick up on more sounds than usual. A secondary respiratory sound is one that is generated in addition to the primary one by the lungs. As an example, apart from the constant sounds of breathing, there is another auditory phenomenon that happens [13].

Each of the topics mentioned below will be explored at further length in the sections that follow. Here, we will examine some of the most recent and noteworthy advances in speech recognition technology. In Section III, we discuss in detail the many techniques that were used to build this structure. In Section IV, we conduct in-depth analyses of many different subjects and draw parallels between them. Finally, the authors draw some firm conclusions from their research and provide suggestions for further research.

II. LITERATURE STUDY

In [1], Fatih Demir and colleagues present a study that delves into the categorization of lung sounds using a Convolutional Neural Network (CNN) model employing a Parallel Polling Structure. Their investigation primarily centers on harnessing deep learning methodologies to precisely classify lung sounds, a development with significant implications for the identification of respiratory conditions. In [2], Valentyn Vaityshyn explores the utility of pre-trained Convolutional Neural Networks (CNNs) in the classification of lung sounds. They are examining the potential of transfer learning to enhance the accuracy and efficiency of lung sound categorization. In [3], Zeenat Tariq presents an approach rooted in deep learning for the classification

of lung diseases utilizing a Deep Convolutional Neural Network (DCNN). Their research is primarily directed towards the development of an effective system for automated lung disease diagnosis. In [4], Md. Ariful Islam and their team concentrate on the classification of individuals with normal, asthma, and COPD conditions based on multichannel lung sound signals. Their study underscores the significance of accurately distinguishing between different lung conditions to facilitate precise medical diagnosis. In [5], Joel Than Chia Ming examines the classification of lung diseases using diverse deep learning architectures and Principal Component Analysis (PCA). Their work explores various methodologies aimed at enhancing the accuracy of lung sound classification.

In [6], Anuradha D. Gunasinghe places their focus on the early prediction of lung diseases. Their research seeks to develop a system capable of detecting lung conditions at an early stage, potentially enabling timely interventions. In [7], Syed Zohaib Hassan Naqvi proposes an intelligent system for the classification of pulmonary diseases based on lung sounds. Their study explores the application of intelligent systems to enhance the precision of pulmonary disease diagnosis. In [8], D. Jayaraj introduces a classification model for predicting lung cancer using Random Forests applied to computer tomography images. Their research centers on the utilization of machine learning techniques for predicting lung cancer. In [9], Funda Cinyol delves into the classification of lung sounds utilizing Convolutional Neural Networks. Their work underscores the adoption of deep learning models for categorizing lung sounds. In [10], Shreyasi Dutta presents an automated approach for analyzing lung sounds to detect pulmonary abnormalities. Their study investigates the implementation of automated analysis techniques for early detection of pulmonary issues.

In [11], Ramizraja Shethwala explores the classification of lung sounds, specifically wheezes and crackles, through the aid of transfer learning. Their research seeks to leverage transfer learning for improved classification accuracy. In [12], Truc Nguyen and Franz Pernkopf center their research on lung sound classification using a snapshot ensemble of Convolutional Neural Networks. Their study investigates ensemble learning techniques to enhance the classification of lung sounds. In [13], R. X. Adhi Pramono evaluates features relevant to the classification of wheezes and normal respiratory sounds. Their research offers insights into the selection of features that promote precise lung sound classification. In [15], Abdulkadir Sengul and Varun Bajaj present an efficient strategy for classifying lung diseases using Convolutional Neural Networks (CNNs). Their work is dedicated to improving the efficiency of systems for classifying lung diseases. In [16], Adnan Hassal Falah and Jondri propose a method for lung sound classification employing stacked Autoencoders and Support Vector Machines. Their research explores the application of deep learning techniques in conjunction with support vector machines to enhance the precision of lung sound classification. In [17], Gorkem Serbes develops an automated system for preprocessing and classifying lung sounds based on spectral analysis. Their study highlights the importance of effective preprocessing techniques in the analysis of lung sounds. In [19], H. Kamble conducts a frequency response analysis of respiratory sounds and carries out a comparative study on windowing techniques. This research primarily focuses on signal processing and the analysis of respiratory sounds to improve our understanding of the characteristics of lung sounds.

III. THE IDENTIFICATION OF RESPIRATORY SOUNDS

A. Gathering Dataset

The ICBHI 2017 database has 920 annotated audio recordings from 126 people, as stated on Kaggle [1,3,9]. Different stethoscopes were used to capture the sounds in this collection. You may choose the length of the recording from 10 seconds to 90 seconds, and the sample rate from 4000 Hz to 44,100 Hz. Each recording includes a set number of breaths, some introductory and concluding commentary, and the ability to identify crackles and/or wheezes. Here, we use database annotations to separate out individual breaths in audio recordings. The average time for a complete cycle is 2.7 seconds, however, it may range from 0.2 seconds to 16 seconds. The database has a total of 6898 breathing cycles, 3642 of which are regular, 1864 of which include crackles, 886 of which have wheezes, and 506 of which include both.

B. Processing Sound in the Lungs

The purpose of a noise reduction method is to either completely remove or significantly reduce the amount of noise present in an image [2,4,6]. Noise reduction techniques work by smoothing the picture generally while leaving the areas at the contrast limits alone. In contrast, these strategies may obfuscate little elements that have a low contrast. Cut and paste [8,9]: Before a full picture can be shown, it must be resized and maybe translated, and it must also be recognized as to what portion of the image can really be seen. It might be challenging to do this. Parts of the picture are obscured while others are not. Removed are just partly occluded lines and things. Clipping is the process of selecting which parts of a picture will be shown and which will be omitted. Clipping separates an item into visible pieces and those that are not. The scope of what can be seen now has been reduced. When something cannot be seen, it is written off as irrelevant.

C. Tools for Extracting Features from Audio

Waveform analysis in the form of a spectrogram [1,2,11-14] provides a visual representation of the intensity or sound of a signal over time by plotting the signal's amplitude against its frequency. The graph also displays the varying energy levels over time. Our proposed inside-outside model may be informed by spectrograms of our lung sounds, which can be generated via a top-down modeling approach. To create these spectrogram pictures, we utilized the excellent Virdis Color Map, whose colors span the spectrum from blue to green to yellow. The Mel Octave According to the Cestrum Coefficients [3,6,9,12], Mel Frequency is a certain pitch in music. For this assignment, we analyzed audio files by computing Cestrum Coefficients. MFCCs are crucial to the success of speech recognition systems in recognizing human speech. It has also been widely used in previous work on the detection of fake respiration sounds because it provides a measure of the short-term power spectrum of time domain data. Recognizing the many accidental noises that may arise in a single recording at various times and for varying lengths of time requires considering both the frequency and temporal content of the sounds. MFCC is helpful because it captures the evolving frequency content of a signal. The Mel scale is a subjective, nonlinear frequency scale that is used in the field of acoustics. Frequencies are assigned to octaves in the Mel scale according to a formula. MFCC generates a two-dimensional (time and frequency) feature vector that is converted to a one-dimensional array. Convolutional Neural Network [8,9,10,11]: Using this neural network classification approach, images are sorted into classes 24-28. This apparatus is known as a Convolutional Neural Network (CNN). In contrast to conventional neural networks, which assign separate weights to each input feature, CNNs use a shared parameter space for all features. This might help the network get insight into its local environment. Since CNN would pick up on the most vital characteristics without any human intervention, feature extraction is superfluous. CNN-based architectures employ data-driven convolutional kernels to construct a deep layered structure for extracting complicated features. CNN also uses very little processing power. Using convolution and pooling, we may distribute parameters and speed up calculations. When dealing with many frequency bands, as is the situation in most communication networks, it is helpful to convert from the time domain to the frequency domain using the Fourier transform (FFT) [2,18,19]. Furthermore, it has the potential to convert discrete data into continuous data that may be retrieved at varying rates.

D. Machine Learning Methods

Data might be linear or non-linear for use in Support Vector Machine (SVM) classification [2, 6]. Several different kernels are available to the user of an SVM Classifier. To classify new data points according to the values of the closest existing ones, we may use a technique called K-Nearest Neighbor [1-3], which is based on the idea that similar observations in a data collection are the ones that are physically nearest to a given data point. The user may adjust how many nearby observations the algorithm uses by changing a parameter K. Navier the Naive Bayes classifier uses Bayes theorem for statistical inference [2,4,7]. The probability of each category being accurate in the training data is calculated. Inverse probability is used to classify the test data. Consequently, it is possible to utilize the mean and variance to accurately forecast outcomes across a population. The key advantage of this classifier is that it can produce an accurate estimate of the mean and variance using just a small fraction of the training data. Naive Bayes classifiers are a collection of easy-to-understand probabilistic classifiers used in machine learning. They are based on Bayes theorem, which is itself based on the premise of feature independence. This classifier is very scalable since the number of parameters grows linearly with the number of predictors/features in the learning problem. As an ensemble classifier, Random Forests [9,11,19] generates decision trees at random. Bagging and a random sampling of variables are used to build the trees in a random forest. Each tree then votes for a class to which the instances should be allocated after the forest has been built. The winning category is the one that received the most votes. Several characteristics of this classifier make it well-suited for the task of classifying enzyme functions: a) It can be utilized successfully on large datasets without the necessity for pre-existing data normalization. The blanks in (b) pose no problem for it. Sequential Analysis [11,12,15]: To build a model for classification or regression, statisticians employ a tree-like structure called a decision tree. The dataset was further divided into subsets. Similarly, the decision tree associated with this issue is being built incrementally. The result is a structure that looks like a tree with branching-off points and terminal branches.

E. Transfer Learning Methods

The Alex-Net [1,5] findings show that a large, recurrent neural network (RNN) may achieve outstanding performance on an extremely challenging data set using just supervised learning techniques. A year after AlexNet's debut, the ImageNet competition began, and all the entrants employed Convolutional Neural Networks. AlexNet was the first CNN, ushering in a new era of research. Despite the proliferation of deep learning frameworks, setting up AlexNet is still a breeze. Res-Net [2,10]: It is a dormant piece of infrastructure with a bypass connection that allows data to flow unhindered through the building. It takes in signal x and generates a signal F using a series of activation curve layers as intermediates (x). A skipped connection is analogous to this modification. In this configuration, the input signal x is compared to the reference signal F, and the differences between the two are described by the residual unit (x). Since the network will have already approximated the output function that creates data at that layer, the optimizer may reduce the weight of the remaining blocks at higher levels virtually to zero, enabling the signal to pass unaltered over the gap. This architecture, named VGG (Visual Geometry Group), is a multi-layer deep convolutional neural network [1,5,10] is a description of the Vgg-Net (DCNN). The difference between

VGG-16 and VGG-19 lies in the overall number of layers, which is 16. A cutting-edge model for object recognition has been built on top of the VGG framework.

IV.DIFFERENTIAL ANALYSIS

TABLE I
DIFFERENTIAL ANALYSIS OF FEATURES

Method	Advantage	Limitation
Mel Frequency Cestrum Coefficients [3,6,9,12]	To mimic the response of the human nervous system more closely, MFCCs frequency bands are arranged logarithmically.	When there is additive noise present, the MFCC results are not especially robust.
Fast Fourier transform [2,18,19]	Compression at low bit rates and compression of continuous tones benefit from this improvement.	Compression times and computation costs may increase.

TABLE II
DIFFERENTIAL ANALYSIS OF MODELS

Method	Advantage	Limitation/Disadvantages
Support Vector Machine [1-4,11,19]	Useful in situations involving several dimensions. is still useful even if there are more dimensions than data points to analyze them in. The decision function is memory-friendly since it uses just a subset of the available training data (the support vectors).	When the number of features exceeds the number of samples, it is more crucial than ever to choose the appropriate Kernel function and regularisation term to avoid over-fitting. SVMs need expensive five-fold cross-validation to assess accuracy instead of supplying probability estimates up front (for more on this, see Scores and probabilities).
K-nearest neighbor [2-8,12,18]	With KNN, a distance formula may be used since the only metric that has to be computed is the distance between two points based on data of various qualities. The model does not need a training period, so new information may be added whenever it is most practical.	Susceptibility to background noise and a lack of required data. This approach fails when dealing with a large dataset since calculating distances between each data item is exceedingly time-consuming.
Naive Bayes [1,9-12,21]	Very easy to use and implement. It is easy to calculate the probability of an event occurring under a given set of conditions. A quick calculation of the chances is possible right away. This kind of training is efficient and quick. Possibly favorable if the hypothesis of conditional independence is correct.	Prerequisites for complete autonomy it is risky to draw broad conclusions. There are a lot of interdependent features. If a word is not part of the training data but appears in the test data for a particular class, the model may not assign it any class probability.
Decision Tree [14,17,19]	When compared to other techniques, pre-processing data for use in decision trees is simpler. A decision tree does not need data standardization to be used.	It is possible that decision tree computations will be far more complicated than those of any other approach. Given the time and effort involved, training a decision tree might end up being rather costly. It usually takes more time to train a model that uses a decision tree.

RF (Random Forest) [3-9,13,16,18]	When comparing the random forest technique to the decision tree approach, the latter falls short of the random forests forecast accuracy. With large data sets, it performs well. When it comes to machine learning, the rain forest algorithm is one of the most flexible and straightforward options available.	Compared to a decision tree method, this one takes much longer to complete.
Alex-Net [3,4,6,13]	In contrast to convolutional layers, which only depend on local spatial coherence and a narrow receiving field, fully connected layers may learn features from all conceivable combinations of the attributes of the layer below them.	Layer construction with many interconnections is computationally intensive.
Res-Net [1,2,11]	If you do not want to, you do not have to form any associations at all. It uses batch normalization, which boosts efficiency without compromising accuracy.	Implementation takes a considerable amount of time.
Inception-V3 [11,13,16]	Permits the use of any layer arrangement.	The training budget must be increased. The time spent calculating is seldom worth it.
Vgg-Net [5,10,11,12, 16]	Unfortunately, only 80% of the available parameters are accounted for.	The degree of precision is deteriorating with time.

V. CONCLUSION

The ability to recognize the distinctive characteristics of lung sounds is essential for their accurate diagnosis and categorization. When working with a huge dataset, however, it might be difficult to isolate individual patterns in attributes. The non-linear nature of environmental data makes standard techniques for discovering patterns and creating mathematical models worthless. In this study, we compare and analyze several aspects of noisy conditions. When MFCC fails, time wave late features may be able to restore functioning. However, unlike deep learning approaches, machine learning-based techniques are inefficient when dealing with huge datasets since they are slower and less accurate. Prospects: What We Can Count on Completely connected and soft max layers outperform conventional hard max layers when it comes to the disease-based classification of lung respiratory adventitious sounds using either the RESNET or ALEXNET transfer learning method.

REFERENCES

- [1] Fatih Demir, Aras Masood Ismael, Abdulkadir Sengur, “Classification of Lung Sounds with CNN model using Parallel Polling Structure”, IEEE Access Volume 8, 2020
- [2] Valentyn Vaityshyn, Hanna Porieva, Anastasiia Makarenkova, “Pre-trained Convolutional Neural Networks for the Lung Sounds Classification”, 39th International Conference on Electronics and Nanotechnology (ELNANO), 2019
- [3] Zeenat Tariq, Sayed Khushal Shah, Yugyung Lee, “Lung Disease Classification using Deep Convolutional Neural Network”, International conference on Bioinformatics and Biomedicine, 2019
- [4] Md. Ariful Islam, Irin Bandyopadhyaya, Parthasarathi Bhattacharyya and Goutam Saha, “Classification of Normal, Asthma and COPD Subjects using Multichannel Lung Sound Signals”, International Conference on Communication and Signal Processing, 2018
- [5] Joel Than Chia-Ming, Norliza Mohd Noor, Omar Mohd Rijal, Rosminah M. Kassim, Ashari Yunus, “Lung Disease Classification using Different Deep Learning Architectures and Principal Component Analysis”, 2nd International Conference on BioSignal Analysis, Processing and Systems, 2018
- [6] Anuradha D. Gunasingle, Achala C. Aponso, Harsha Thirimanna, “Early prediction of lung disease”, 5th International Conference for Convergence in Technology, 2019
- [7] Syed Zohaib Hassan Naqvi, Dr. Mohammad Ahmed Choudary, Aleena Zaman Khan, Maheen Shakeel, “Intelligent System

for Classification of Pulmonary Diseases from Lung Sound”, 13th International conference on mathematics, Actuarial science, Computer science and Statistics, 2019

- [8] D. Jayaraj, S. Sathiamoorthy, “Random Forest-based Classification Model for Lung Cancer Prediction on Computer Tomography Images”, Second International Conference on Smart and Inventive Technology (ICSSIT 2019), 2019
- [9] Funda Cinyol, Huseyin Emre Mutlu, Ugur Baysal, “Classification of Lung Sounds with Convolutional Neural Network”, 21st National Biomedical Engineering Meeting, 2017
- [10] Shreyasi Dutta, Anirban Dutta Choudary, Parijat Deshpande, Sakyajit Bhattacharya, Arpan Pal, “Automated Lung Sound Analysis for Detecting Pulmonary Abnormalities”, 39th Annual International Conference of the IEEE Engineering in Medicine & Biology society, 2017.
- [11] Ramizraja Shethwala, Shital Pathar, Tejal Patel, Prasann Barot, “Transfer Learning Aided Classification of Lung Sounds” Wheezes and Crackles Fifth International Conference on Computing Methodologies and Communication (ICCMC 2021), 2021
- [12] Truc Nguyen, Franz Pernkopf, “Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks”, 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020
- [13] R. X. Adhi Pramono, S. A. Imtiaz, and E. Rodriguez-Villegas, “Evaluation of features for classification of wheezes and normal respiratory sounds”, PLoS One, vol. 14, no. 3, pp. 1–21, 2019, doi: 10.1371/journal.pone.0213659.
- [14] D. Jayaraj, S. Sathiamoorthy, “Random Forest-based Classification Model for Lung Cancer Prediction on Computer Tomography Images”, Second International Conference on Smart and Inventive Technology (ICSSIT 2019), 2019
- [15] Fatih Demir, Abdulkadir Sengul, Varun Bajaj, “Convolutional neural networks based efficient approach for classification of lung diseases Health Information Science and Systems”, 2019
- [16] Adnan Hassal Falah, Jondri, “Lung sounds classification using stacked Autoencoder and Support Vector Machine”, 7th International Conference on Information and Communication Technology (ICoICT), 2019
- [17] Gorkem Serbes, Sezer Ulukaya, Yasemin P. Kahya, “An Automated Lung sound Preprocessing and Classification System Based on Spectral Analysis”, International Conference on Biomedical and Health Informatics, 2017
- [18] Shreyasi Dutta, Anirban Dutta Choudary, Parijat Deshpande, Sakyajit Bhattacharya, Arpan Pal, “Automated Lung Sound Analysis for Detecting Pulmonary Abnormalities”, 39th Annual International Conference of the IEEE Engineering in Medicine & Biology society, 2017.
- [19] H. Kamble, “Frequency Response Analysis of Respiratory Sounds and Comparative Study for Windowing Techniques” pp. 210–215, 2016.

Different Types of Methods to Recover Regenerative Energy Replacing Conventional Dynamic Braking Of Variable Frequency Drive

Pankaj. C. Patel¹, Hansa H. Patel², Habiba. V. Momin³

Lecturer, Department of Electrical Engineering ^{1, 2, 3}
Swami Sachchidanand Polytechnic College Sankalchand Patel University, Visnagar, Gujarat, India ^{1, 2, 3}

pcpatel.sspc@spu.ac.in¹, hpatel.sspc@spu.ac.in², hvmomin.spc@spu.ac.in³

Abstract: These days, the most common drive in businesses is the Variable Frequency Drive (VFD). However, when dynamic braking is employed in the typical VFD, some energy is lost in it. When a motor functions as a generator, there are several ways to use and convert the regenerated energy so that it may be stored instead of evaporating as heat during dynamic braking. This paper illustrates some of the approaches.

Keywords: Drive Frequency Variable (VFD), Brake Dynamic (DB), and Hertz (Hz)

I. INTRODUCTION

The term "drive" refers to a broad concept that manages motion by precise Begin, halt, and characteristics of torque to needed by the process, minimizing losses by maintaining the highest possible efficiency while limiting input energy levels to the absolute lowest. The drive may be used alone or in conjunction with electrical, mechanical, hydraulic, or pneumatic motors as well as gearboxes, belt and throttle valves, chain drives, pulley drives, pressure regulators, and electronic systems with analog and digital controllers as control components. An asynchronous induction motor powers over 80% of industrial movements. As a result, mechanical drives are becoming simpler, and more common AC digital drives are replacing DC drives. [1].

Simply put, As a motor controller, a variable of frequency drive (VFD) works that adjusts the volt and Hz at which an electric of motor—typically a three-phase squirrel cage motor of induction is driven. Variable frequency drives, AC drives, micro-drives, inverters, variable speed drives, and adjustable speed drives are some other names for VFDs. The frequency Hz, which is proportionate the motor's speed, controls the VFD. The motor's speed rises with increasing frequency and the other way around. The Variable of Frequency Drive (VFD) market expanding quickly, making it is more crucial than ever for experts and maintenance staff to maintain the proper operation of VFD installations. VFDs, or variable frequency drives, alter speed [4].

Variable Frequency Drive's primary responsibilities are:

1. Because of their durability and low maintenance requirements, VFDs are primarily utilized in process facilities for stepless control of the speed of squirrel cage induction motors.
2. The VFD regulates the motor's speed by adjusting the output volt and Hz using the advanced microprocessor's controlled electronics of the device.
3. Units for inverters and rectifiers make up a VFD. An inverter changes DC voltage back into AC voltage, and a rectifier changes AC voltage into DC voltage.

II. VFD AND BRAKING OPERATIONS

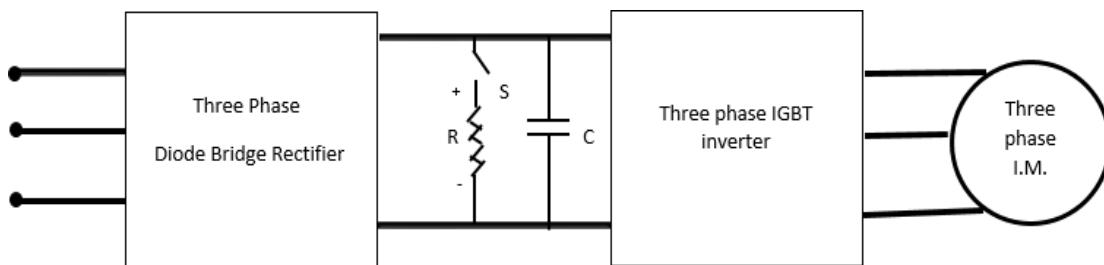


Fig 1. The drive with variable frequency (VFD)

The rectifier unit receives the three-phase AC supply and uses it to convert the AC to DC, which is typically around 650V in voltage. After that, the harmonics are eliminated and the DC voltage is filtered out. An induction motor is connected to the three-phase inverter, which converts the DC electricity to AC voltage and powers the motor. The inverter's controlling section is where frequency and speed are adjusted.

Why a motor functions as a generator?

1. accelerating the deceleration of a heavy object (a mechanical arm or flywheel)
2. Regulating a load's speed as it descends vertically (hoist, decreasing conveyor)
3. An industrial saw or machining/drilling operation causes a quick decline in load torque.
4. Repeatedly accelerating and decelerating to a stop is necessary for the procedure (indexing)
5. Managing an unwind application's speed (tension control)
6. Operating motors can be abruptly stopped without suffering any mechanical damage. Once the supply has stopped

When the motor is functioning as a generator, the inverter component permits the stator's energy to be transferred returning to the DC bus. When the voltage in the DC bus exceeds a certain point, the braking chopper in the DC bus switches ON and the surplus energy is dispersed as heat through a resistor linked in series with the braking chopper. The motor thus stops gradually. This technique is known as VFD dynamic braking. In the modern era, industries typically employ this technique. Fig. 1 illustrates the VFD's traditional dynamic braking. Applications that need frequent or quick braking, particularly for heavy (high of inertia) of loads, usually employ dynamic braking (DB). Nevertheless, a lot of these applications might also be suitable for regenerative.

It is frequently necessary to install additional cooling and air conditioning due to the waste heat generated by DB. A regenerator that will save the client money and energy by extracting waste heat and redirecting that energy back into the AC line. By incorporating a regenerative unit into systems, the demand on the cooling system can be decreased and the regenerative unit's upfront cost can be mitigated. This will allow for a more compact HVAC system. A single Regenerative unit is able to supply numerous drives is connected to a typical DC bus and optimize energy efficiency by gathering excess regenerative energy that the drives do not need.

III. TECHNIQUES FOR RECOVERING RENEWABLE ENERGY

When VFD functions as a generator, there are primarily three ways to recover its regenerative energy:

1. Braking resistor snubber
2. Control of line regeneration
3. Control of synchronous rectifiers

3.1 Braking resistor snubber

The transistor and circuitry of Snubber Resistor Braking Kits "turn on" when the DC bus voltage is set. that less than the AC drive trip of point. The energy is transmitted to resistors, or set resistors, at this voltage level, where it is burned off as heat. Certain AC drives just need to have a resistor kit added because they already have a built-in brake transistor. Compared to synchronous rectifier controls or line regeneration controls, snubber resistor braking kits are a less expensive option. However, because they need time to cool down, snubber brake resistors are not as good for highly cyclical activities like frequent, repetitive starts and stops. For these applications, synchronous rectifier controls or line regeneration controllers are more appropriate.

3.2 Control of Synchronous Rectifiers

A set of transistors is pulsed "on" at a fixed DC bus voltage that is below the AC drive's trip point when Line Regeneration Controls are employed. The energy is returned straight to the AC power supply at this voltage level. Up to the transistor current rating, line regeneration controllers can run continuously[3]. They are also energy-saving devices because of their capacity to recycle electricity back into the power source. The higher expense of these measures may eventually be offset by the energy savings. The regenerative module, as depicted in Fig. 2, saves energy by converting excess DC bus energy to 3-phase AC power that returns it to of source.

We can gain some understanding of how a regenerative brake functions by returning to the three-phase bridges that were previously discussed. The IGBT bridge inside the regenerative converter and the drive's diode bridge are connected in parallel. When a diode in the diode bridge of the drive is forward biassed, the of diode at the identical relative location within the IGBT bridge as well becomes forward is biassed. Recall that is the DC bus and AC line terminals are essentially where the two bridges are joined. [6].

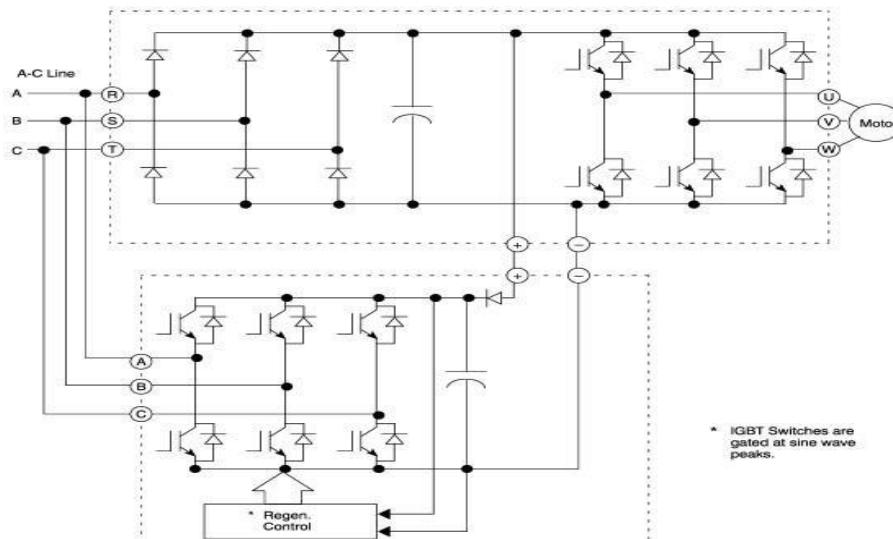


Fig 2. Control of the line Regeneration

3.3 Control of Synchronous Rectifiers

Rectifier Synchronous Controls is power the DC bus of an AC drive by acting as converters from AC line voltage to DC voltage or as controls for line regeneration. This is the newest technology that has the potential to be the best regenerative drive option. As seen in Fig. 3, the circuit for this comprises two IGBT bridges that are both PWM-controlled. The gating of the converter bridge is in rhythm with the A-C line. With the removal of the fifth and seventh harmonics, the resulting input currents are almost sinusoidal, as observed in diode bridge converters [3].

When the IGBT converter bridge is in driving mode, it functions as to boost converter for supplying DC bus volts by using a DC bus capacitor and a resonant-tuned input line reactor. In comparison to the voltage produced by a traditional diode bridge rectifier, this intermediate value is greater. For the purpose of optimizing input power factor When operating in the regenerative mode, the IGBT bridge supplies width-regulated bursts of the surplus C bus of voltage. A leading pf can be achieved in the system by adjusting the synchronous PWM rectifier to compensate for other trailing loads[3].

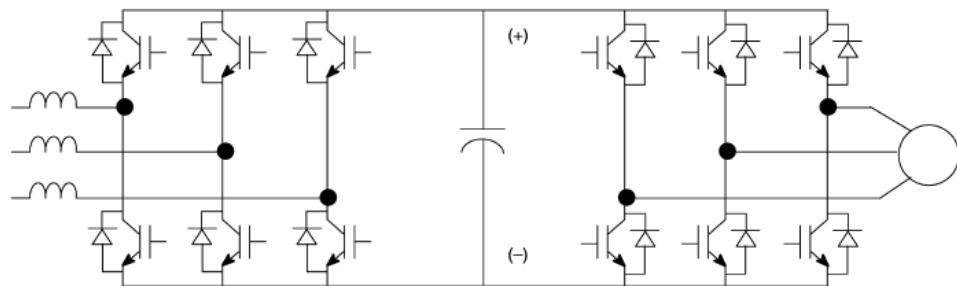


Fig 3. Control of Synchronous Rectifiers

IV. USES FOR REGENERATIVE AC DRIVE

- Loads that need to be overhauled
- Loads with a high moment of inertia
- Machines that need to slow down quickly
- Vacuum pumps
- Flywheels
- Cranes
- Hoists
- Locomotives
- Elevators
- Drums
- Kilns
- Injection moulding machines

V. CONCLUSION

According to the explanation above, there are various ways to reclaim the motor's renewable energy in place of the traditional VFD braking. The synchronous rectifier control approach is the most effective of the three because to its high efficiency and reduced cost. Moreover, this implementation can lower the cost of energy loss.

ACKNOWLEDGMENT

"What we see when we take our eyes off the goals are obstacles." One of the best instructors is frequently adversity. We owe them respect for what they have taught us, even if those individuals have in some manner violated us or captured our darkest fantasies. We want to thank everyone for their contribution to our lives.

We are also appreciative of our cherished principle, whose tireless and independent efforts have motivated us to take action in the near future. We also appreciate the generous assistance provided by our teaching and non-teaching staff in completing this project within the deadline. In conclusion, we express our gratitude to our parents and friends for their unwavering support during the project.

REFERENCES

- [1] Anuradha Tomar, Devesh Singh, "Literature Survey on Variable Frequency drive", IRACST- Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498, Vol.2, No. 3, June
- [2] Rishabh Singh, Umashankar. S, D. Vijaykumar, "Dynamic Braking of Induction motor- Analysis of Conventional Methods and an efficient multistage braking model", IEEE, pp. 197-206, April 2013.
- [3] www.reliance.com/pdf/drives/whitepapers/D7166
- [4] Tamal Aditya, "Research to study Variable Frequency Drive and its Energy Savings" , IJSR, Volume 2 Issue 6, June 2013
- [5] http://www.hitachi-america.us/ice/white_papers/vfd/hitachi_regen_wp_dl.html
- [6] Link:irtfweb.ifa.hawaii.edu/~tcs3/tcs3/Misc/CFHT/Dome_drive_upgrade/Drive%20education/Understanding%20Regeneration.pdf

IoT-Based Dustbin Monitoring System

Bhavik H. Prajapati¹, Ninama Ambikaben²

Assistant Professor, ICT Department, SPCE, Visnagar, India¹
PG Student, ME ECE, KITRC, Kalol, India²

bhavik_ec07@yahoo.co.in¹, ambikaninama062@gmail.com²

Abstract: The overflowing trash cans in most cities produce an unclean atmosphere. This will also cause various kinds of unidentified diseases to develop. Many types of dustbins, such as swing lid trash cans, pedal trash cans, mesh trash cans and open trash cans are used to dispose of rubbish or garbage these days. The problem with open and mesh garbage cans is that they can harbor a deadly stench for several days if the rubbish is left undisturbed, and children can easily unravel the waste and scatter it everywhere. Another disadvantage for people with children is how difficult it is to keep an eye on them and keep them away from trash cans. These trash cans are frequently used in streets, workplaces, hospitals, and residences. The economical use of dustbins is discussed in this article. The presented work aims to reduce human efforts and to automate the task of ash-bin.

Keywords: Internet of Things (IoT), Waste management, Arduino, GSM/GPRS module, Ultrasonic Sensor

I. INTRODUCTION

An extremely creative technology today that will aid in maintaining clean cities is the IOT-based dustbin monitoring system. This system continues to keep an eye on the trash cans and uses a web page to notify users about the amount of trash that has been collected. To do this, the system compares the depth of the garbage bins with the garbage level using ultrasonic sensors that are positioned over the bins. The Arduino UNO, GPRS module, buzzer, and data transmission are utilized by the system. The Ministry of Urban Wellbeing, Housing, and Local Government claims that these wastes are causing severe air and land pollution, health issues for local populations, and obstacles to economic growth. When combined, Malaysia's inadequate waste management practices represent one of the country's most pressing problems to date. The project's goals are to create a working prototype of an Internet-of-Things (IoT) garbage monitoring system and notify garbage collectors when the bin is full by determining the garbage level based on the bin's depth. Cleaning all of the dustbins as soon as they are filled is crucial. [1]

II. PROBLEM DEFINITION

Solid waste management is a major issue in urban areas. In a traditional waste management system, the person in charge of collecting garbage is unaware of how much waste is in the dustbin. When the dustbins fill up, the garbage spills out and overflows, creating an unsanitary environment in urban areas. Garbage is dumped into the already overflowing dustbin. Untidy trash cans can occasionally give off an unpleasant odor in addition to producing toxic and unsanitary gases, which contributes to air pollution and the spread of some dangerous diseases. The city has a really poor appearance. Using a traditional system leads to an ineffective system that costs money and takes time to use. [2]

In this article, the issue of overflowing solid waste bins that contaminate the environment is addressed. The ultrasonic distance measuring sensor determines how much garbage is in each bin. The microcontroller in each garbage bin sends an alert message to the e-monitoring station when the level of garbage inside surpasses a predetermined threshold. The workstation then arranges for the closest garbage collection truck to pick up the trash from the bins that have sent the alert. The sanitation experts can work more productively and save money by using this information, which indicates when the container is full and needs to be emptied.

III. METHODOLOGY

A system based on the Internet of Things (IoT) will automatically alert and properly dispose of such waste. Every person on the planet disposes of their waste in a dustbin, which they then empty once it is full. This is how a typical dustbin is used in its most basic capacity—all manual operations, no coding, and no use of components. When the waste from the bin overflows the lid, the bin is not being properly maintained. Using dustbins with distinct segregations, such as green and blue bins placed together or a dustbin designated solely for recyclable waste, is the second method. The third method uses Arduino, ultrasonic sensor, GSM module, and servomotor to do the same result and it is not cost-efficient.

A. Hardware

- Arduino UNO
- HC-SR04 ultrasonic sensor
- Connecting wires
- GSM/GPRS module

B. Block Diagram

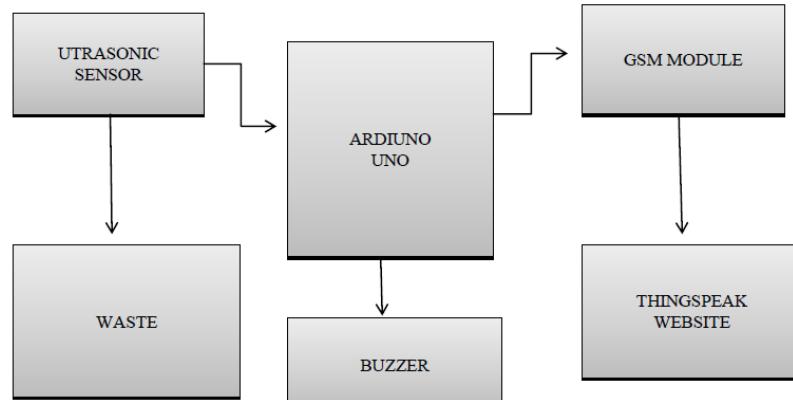


Fig.1. Block diagram of process system

The device that is being shown uses an ultrasonic sensor as an input, which is positioned at the waste can's highest level. An ultrasonic sensor is used to measure the garbage level and an Arduino for system control makes up the system. Everything will be connected to ThingSpeak. The user will be able to see the amount of waste in the dustbin without having to open it at the same time thanks to the level of garbage display. Based on the depth of each bin, the four ultrasonic sensors connected to Arduino determine the garbage level in each one. In order to ensure that data transfers and displays on ThingSpeak, these four ultrasonic sensors are connected to the GSM module simultaneously. Based on the type of waste, the system will attempt to monitor the rubbish's depth in this work. The home garbage should not wait for the bin to be completely full since the longer it is in the bin, the longer it will rot and cause an unpleasant environment.

C. Circuit Diagram

Figure 2 illustrates the circuit and how each component is connected to the others. Here, a logic level converter is used to connect ultrasonic sensors to the Arduino UNO and GSM module. The purpose of the logic level converter is to lower the ultrasonic sensor's 5V voltage to 3.3V. This is a result of the GSM module's PINs only accepting 12 V. In this setup, in order to create data and connect to the GSM module, the ultrasonic sensor requires a minimum of 5V. After being gathered, the data was uploaded to ThingSpeak for analysis and visualization.

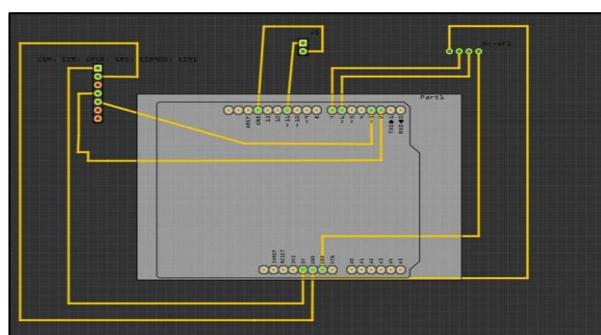


Fig.2. Circuit connection

D. Working Process

The Arduino will read the ultrasonic sensor after the account is created and then send a signal at the speed of sound. Once it hits the object, it reverses direction and travel time is stored. Consequently, the object's distance is computed. The garbage level can be classified as low or high based on distance. To denote the need for the cleaning procedure, we used the term "Overflow."

E. Result

The testing methodologies are referred to as test cases, as Table I illustrates. The operation and assessment results of the IOT-based dustbin monitoring system are displayed in Table I.

TABLE I
SMART GARBAGE BIN STATUS IDENTIFICATION AND EVALUATION RESULTS

TESTCASE DESCRIPTION	TESTCASE NOTATION	INPUT	REQUIREMENTS	TESTCASE STATUS	BUZZER
The garbage bin was found to be "EMPTY"	T1	Null	The Garbage bin should not have waste in it	Pass	NO
The garbage bin was found to be "MEDIUM"	T2	Garbage filling	The Garbage bin should be filled to its intermediated level	Pass	NO
The garbage bin was found to be "NEARLY FULL"	T3	Garbage filling	The garbage bin should be filled to an above intermediate level	Pass	YES
The garbage bin was found to be "FULL"	T4	Filled	The garbage bin should be filled to its maximum level	Pass	YES
The garbage bin was found to be "THRESHOLD CROSSED"	T5	Spillover	The garbage bin should be filled to a level that crosses the threshold limit	Pass	YES

Fig. 3. Hardware components

Testing the rubbish bin's fullness and emptiness serves as an evaluation of the system. The resulting level of garbage will display as empty if the trash can is empty. The buzzer will turn on based on how full the trash can is. Simultaneously, ThingSpeak will receive data from the sensor via the GSM module. As seen in Fig. 4, the data will be displayed in real-time by the ThingSpeak. Thus, waste management is able to keep an eye on the amount of junk that is buried inside the dustbin.

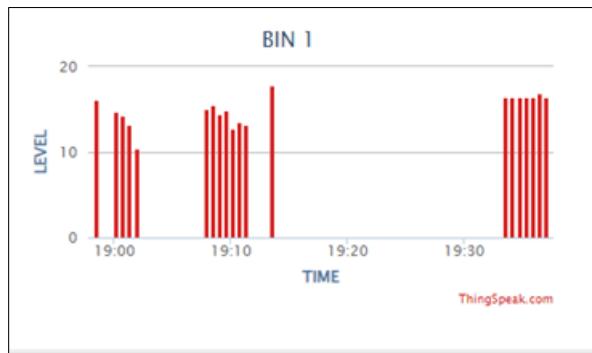


Fig.4. The data on ThingSpeak for bin

F. Advantages

- Quite a basic circuit.
- Helps monitor garbage levels.
- Makes little use of electricity.
- In the end, facilitates improved garbage pickup scheduling.
- It may decrease the amount of overflowing bins.
- Cuts down on travels to locations where the bins still have a lot of capacity.

G. Disadvantages

- The city gets a bad image of being dirty.
- The system requires a larger number of garbage bins for different waste collection according to the population in the city.
- This results in high initial cost owing to the expensive smart dustbin comparison to other methods.
- The dustbin's sensor mode has a small memory capacity.

H. Applications

- The "SMART CITY" can also make use of this initiative.
- The government's "SWACHH BHARAT ABHIYAN" project benefits from this project as well.

IV. CONCLUSION

This article presents a workable system for monitoring the level of garbage. The presented work uses sensors to measure the amount of waste in the dustbin in real time to implement a real-time waste management system. This system allows users to access the dustbin's information at any time and from any location. This system will assist in providing real-time information on each trash can's status. Therefore, when the dustbin is full, waste management can dispatch the garbage collector to pick up the trash. The ultrasonic sensor's detection range is 2cm to 400 cm, and it has a working buzzer. This sensor will display the amount of trash in the dustbin by comparing its depth. At the same time, the sensor will send data to ThingSpeak via the GSM module. Real-time data visualization is possible with ThingSpeak's data. As a result, garbage management is watchable.

V. FUTURE SCOPE

This system helps keep our neighborhood, house, or even the environment clean and green, which leads to a better way for us to live in a hygienic environment. It also provides real-time waste monitoring. The amount of waste containers in the dustbins is tracked using an ultrasonic sensor.

ACKNOWLEDGMENT

We would like to say thanks to our Institute's Management, Director, and Principal for the kind support and constant encouragement to do such kind of work.

REFERENCES

- [1] Parkash and V. Prabu, “*IOT-based waste management for smart city*,” International Journal Research Computer and Communication Engineering., vol. 4, no. 2, 2016.
- [2] A. Omran, A. Mahmood, and H. a Aziz, “*Current practice of solid waste management in Malaysia and its disposal*” Environmental Engineering Management Journal, vol. 6, no. 4, pp. 295–300, 2007.
- [3] Kumar, S., Smith, S.R., Fowler, G., Velis, C., Kumar, S.J., Arya, S., Kumar, R. and Cheeseman, C., 2017 “*Challenges and opportunities associated with waste management in India*” Royal Society open science, 4(3), p.160764.
- [4] <https://www.todaygh.com/clean-city-waiting-garbage-spilling/>
- [5] Medvedev, A., Fedchenkov, P., Zaslavsky, A., Anagnostopoulos, T. and Khoruzhnikov, S., 2015, August. “*Waste management as an IoT-enabled service in smart cities*” In Conference on Smart Spaces (pp. 104-115). Springer, Cham.
- [6] Nallapaneni Manoj Kumar, Karthik Atluri, Sriteja Palaparthi, “*Internet of Things (IoT) in Photovoltaic Systems*”, 2018 IEEE National Power Engineering Conference (NPEC)
- [7] H. Samih, “*Smart cities and internet of things*,” Journal of Information Technology Case and Application Research, vol. 21, pp. 3–12, 2019.
- [8] T. Anagnostopoulos et al., “*Challenges and opportunities of waste management in IoT-enabled smart cities: A survey*,” IEEE Transactions on Sustainable Computing, vol. 2, pp. 275–289, 2017.
- [9] A. Ahsan et al., “*Assessment of municipal solid waste management system in a developing country*,” Chinese Journal of Engineering, vol. 2014, pp. 1–12, 2014.
- [10] A. Kumar and A. Agrawal, “*Recent trends in solid waste management status, challenges, and potential for the future Indian cities – A review*,” Current Research in Environmental Sustainability, vol. 2, pp. 1–19, 2020.
- [11] S. V. Akram et al., “*Role of wireless aided technologies in the solid waste management: A comprehensive review*,” Sustainability, vol. 13, pp. 1–31, 2021.

Predictive Modeling for ATME-TOX Properties of Drug Using Machine Learning: A Review

Anjali S. Patel¹, Kiran B. Thakor², Megha K. Patel³

Department of Computer Engineering, Sankalchand Patel University, Visnagar, Gujarat, India^{1,2,3}

patelanjali122001@gmail.com¹, kbthakor.sspc@spu.ac.in², mkpatel.sspc@spu.ac.in³

Abstract: This survey paper comprehensively explores the landscape of predictive modeling for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of drugs through the lens of machine learning (ML) techniques. The review encompasses an extensive analysis of methodologies, data sets, advancements in ML algorithms, and their applications in drug discovery and development. Beginning with an overview of the significance of ADMET properties in drug development, the survey delves into various datasets utilized for modeling, encompassing chemical descriptors, biological activities, physicochemical properties, and toxicity endpoints. It scrutinizes the intricacies of feature engineering, emphasizing the importance of selecting informative features for accurate predictions. The survey critically evaluates an array of ML algorithms employed in predictive modeling, ranging from traditional methods to state-of-the-art deep learning architectures. It highlights the strengths, limitations, and applications of these algorithms in predicting ADMET properties, emphasizing the need for robust experimental design and validation protocols. Challenges such as interpretability, data quality, and integration of domain knowledge are addressed, underscoring the significance of standardized frameworks for ensuring reproducibility and generalizing ability of predictive models. Furthermore, the survey showcases successful applications of ML-based predictive modeling in optimizing drug candidate selection, mitigating toxicity risks, and expediting the drug discovery process.

Keywords: Health care, Machine Learning, Deep Learning, ADMET Properties

I. INTRODUCTION

In recent years, the application of ML techniques in predicting ADMET properties of drug candidates has emerged as a pivotal area in pharmaceutical sciences. The introduction provides an overview of the significance of ADMET properties in drug development, emphasizing the necessity of efficient prediction models to assess these properties early in the drug discovery process. It discusses the complexities and challenges associated with traditional experimental methods in assessing ADMET properties, underscoring the need for computational approaches that expedite the identification of potential drug candidates while reducing costs and laboratory efforts. Predictive modeling for ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of drugs using machine learning (ML) involves employing computational techniques to forecast how a drug candidate might interact within a biological system. This approach has become integral in pharmaceutical research and development, aiding in the identification and optimization of potential drug candidates while minimizing risks associated with toxicity and inefficacy.

II. METHODOLOGY AND APPROACH

A. Objective: The primary goal is to predict and assess various crucial properties of a drug candidate:

1. **Absorption:** How the drug is absorbed into the body's blood stream from its administration route.
2. **Distribution:** How the drug spreads throughout the body's tissues and organs.
3. **Metabolism:** How the drug is chemically altered within the body.
4. **Excretion:** How the body gets rid of the medication and its metabolites.
5. **Toxicity:** Assessing potential adverse effects the drug might induce.

B. Data Acquisition: Gathering comprehensive data from various sources (e.g., biological assays, chemical databases, research publications) that detail the properties and behaviors of different drug molecules.

1. **Data Preprocessing:** the data is cleaned by handling missing values, normalizing features, and structuring it for analysis. This step ensures that the data is suitable for ML algorithms.
2. **Feature Engineering:** Identifying relevant features or properties that impact ADMET behaviors. This may involve transforming existing features or creating new ones that enhance predictive power.
3. **Model Selection:** Choosing suitable ML algorithm (e.g., RF, Gradient Boosting, and Neural Networks) based on the nature of the data and the prediction task.
4. **Model Training:** Training the selected models on a portion of the dataset to learn patterns and relationships between drug features and ADMET properties.
5. **Model Evaluation:** Assessing model performance using metrics like accuracy, precision, recall, or area under the curve (AUC) for classification tasks, and metrics like RMSE or R-squared for regression tasks.
6. **Model Validation and Interpretation:** Ensuring the model generalizes well to new, unseen data. Analyzing feature importance can provide insights into which factors significantly influence the predictions.
7. **Deployment and Monitoring:** Deploying the model to predict ADMET properties of new drug candidates. Continuous monitoring and potential model updates as new data becomes available or as performance changes are essential.

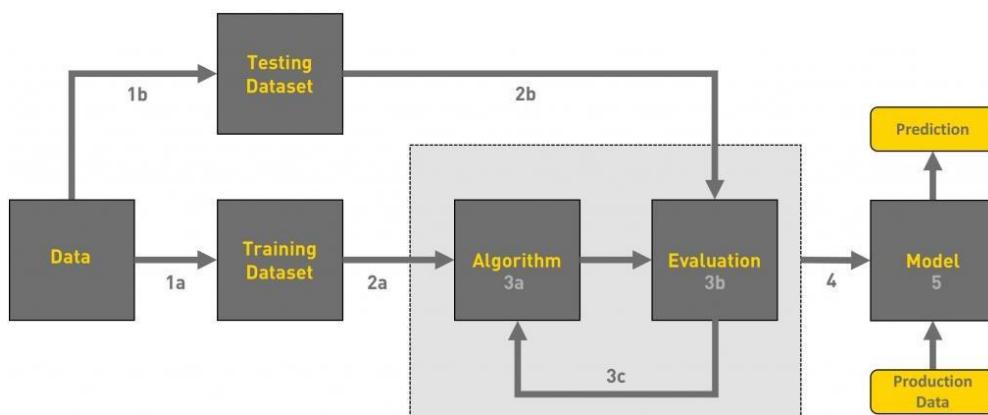


Fig. 1. Work flow of Machine Learning

C. Scope of the Survey:

The survey aims to comprehensively review and analyze various aspects of predictive modeling for ADMET properties using ML techniques. It delves into:

1. **Data Sources and Preprocessing:** Discuss the diverse sources of data used for modeling ADMET properties, data quality challenges, and preprocessing techniques required for ML algorithms.
2. **Feature Engineering and Selection:** Highlighting strategies for identifying essential features and engineering approaches to enhance predictive power.
3. **Machine Learning Models:** Reviewing a spectrum of ML algorithms (e.g., RF, Neural Networks, and Support Vector Machines) employed in predictive modeling and their applications to specific ADMET properties.
4. **Model Evaluation and Validation:** Discussing metrics and techniques used to assess model performance and ensure generalizability and reliability.
5. **Challenges and Future Directions:** Addressing challenges such as interpretability, domain knowledge integration, and the need for more comprehensive datasets. Additionally, discussing emerging trends and future directions in the field.

D. Significance:

The introduction emphasizes the significance of this survey in consolidating current knowledge, providing a comprehensive understanding of methodologies, and identifying gaps and opportunities for future research in predictive modeling for ADMET properties using ML. It highlights the potential impact of these models in expediting drug discovery, optimizing candidate selection, and minimizing risks associated with toxicity and inefficacy.

By offering a comprehensive review of existing literature, methodologies, challenges, and potential advancements, this survey aims to serve as a roadmap for researchers, practitioners, and stakeholders in the pharmaceutical industry, fostering advancements in predictive modeling for ADMET properties using ML techniques.

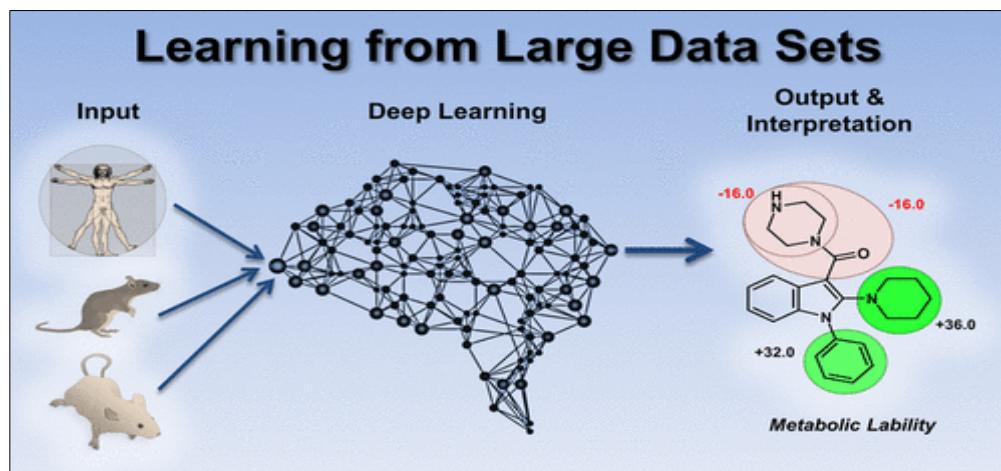


Fig. 2. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties

III. LITERATURE SURVEY

A. Using Tox21 and Machine Learning to Determine the Protein Features and Pathways That Cause Toxicity: Consequences for Predictive Toxicology [13]

For assessing drug toxicity, this is the first computational pipeline that uses protein descriptors to extract important information from twelve toxicity endpoints in the Tox21 dataset. Our strategy combines several protocols that are part of the CANDO drug discovery platform. Compound-proteome interaction signatures, data balance, feature selection, and enrichment analysis are all part of these techniques. Understanding chemical toxicity patterns at the protein pathway level is the goal of this coordinated study. We hope that this new computer pipeline will provide a new way to evaluate environmental chemicals. Additionally, it offers the pharmaceutical industry and researchers a chance to investigate the underlying proteome mechanisms that cause toxicity and may even help create new treatments that target pathways linked to toxicity.

B. ML in drug design: Investigating the link between chemical structure and biological function using artificial intelligence [14]

An extensive review of the application of artificial intelligence (AI) systems in drug design is provided in this work. One of the AI methods used to find chemical compounds with potential medical applications is a neural network. The comeback and long-term effects of AI in medicine were addressed in the 2019 Nature Machine Intelligence article. It validated the increasing contribution of computational techniques and computer developments to drug design. While several neural network topologies, such as CNN, capsule, or GAN, are used in drug creation, the review stressed that no single network is unquestionably the best technique. But deep learning (DL) solutions are becoming more and more well-liked because they can replicate complex human thought processes and independently determine design significantly.

C. A review on machine learning approaches and trends in drug discovery [15]

A collaborative effort is imperative to seek and implement standardized frameworks. This effort stands as a crucial factor in swiftly transitioning academic findings into industrial applications. Lack of standardization in processes and methodologies poses a challenge, preventing the extension of research outcomes to practical clinical tasks. Hence, when employing machine learning

techniques, it becomes essential to design experiments robustly to ensure reproducibility across diverse researchers. Throughout this review, inconsistencies in this aspect were evident across various articles analyzed. To arrive at definitive conclusions, addressing this issue deserves significant attention. Nonetheless, the potential and benefits offered by machine learning techniques remain vast, particularly within the realms of precision medicine and drug discovery.

IV. DATASET

Several datasets are available for predictive modeling of ADMET properties using machine learning in drug discovery. Some popular datasets include:

1. **Tox21Dataset:** This data set, developed by the National Institutes of Health (NIH), contains results from high-throughput screening assays measuring toxicity-related properties for thousands of chemical compounds.
2. **Drug Bank:** Drug Bank is a comprehensive database that includes information on drugs, their targets, chemical structures, and ADMET properties. It's a valuable resource for predictive modeling in drug discovery.
3. **ChEMBL:** ChEMBL is a large database that provides bioactivity data, including ADMET properties, for a wide range of compounds. It's frequently used in drug discovery research.
4. **PDBbind:** This dataset focuses on protein-ligand binding affinity and contains information about protein structures, ligands, and their binding affinities, which can be relevant for drug design and ADMET prediction.
5. **PubChem BioAssay Database:** PubChem offers an adverse collection of bioassay data, including ADMET-related assays, which can be used for modeling toxicity properties.
6. **TCRD (Therapeutic Target Database):** TCRD provides information on drug targets, including protein interactions, pathways, and associations with diseases, which can be used in predictive modeling.

When using these datasets for predictive modeling, it's crucial to preprocess the data, handle missing values, perform feature engineering, and split the dataset into training and testing sets for model development and validation.

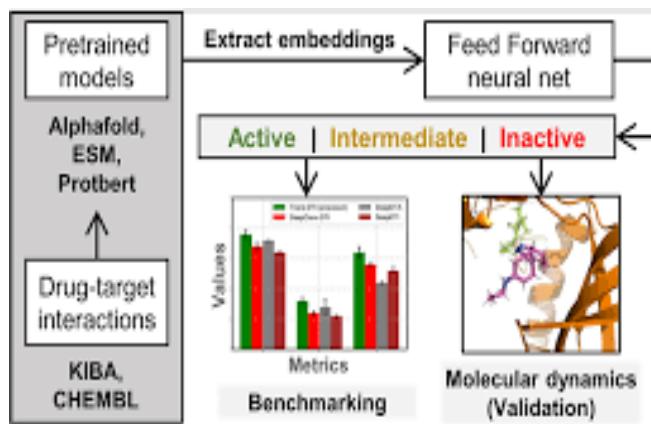


Fig.3. Transformer-Based Language Models for Estimating DTI and Building a Drug Recommendation Workflow^[16]

A. Attributes of Dataset: Attributes in a dataset for predictive modeling of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of drugs using machine learning typically include various features describing chemical compounds and their biological properties. Here are common attributes or features found in such datasets:

1. **Chemical Descriptors:** Molecular descriptors representing structural features of compounds, such as molecular weight, chemical formulas, atom counts, bond types, etc.
2. **Biological Activity:** Information about the interaction of compounds with biological targets, including binding affinity, enzymatic activity, or cellular responses.
3. **Physicochemical Properties:** Properties like solubility, lipophilicity, polar surface area, and hydrogen bonding capacity influence a compound's behavior in biological systems.
4. **Toxicity Endpoints:** Measurements or predictions of toxicity-related properties, including cytotoxicity, mutagenicity, genotoxicity, carcinogenicity, hepatotoxicity, cardiotoxicity, etc.

5. **ADMET Parameters:** Attributes describing the Absorption, Distribution, Metabolism, Excretion, and Transport properties of compounds, such as bioavailability, permeability, metabolic stability, plasma protein binding, etc.
6. **Biological Pathways/Targets:** Information about biological pathways affected by the compounds, target proteins, gene expression changes, and pathway interactions.
7. **Experimental Conditions:** Conditions under which the data was collected, including concentrations, assay types, cell lines, organisms, and experimental protocols.
8. **Metadata:** Additional information like compound IDs, assay IDs, sources of data, assay descriptions, and any other relevant contextual information.
9. **Outcome/Label:** The target variable representing the toxicity or ADMET property being predicted or classified.

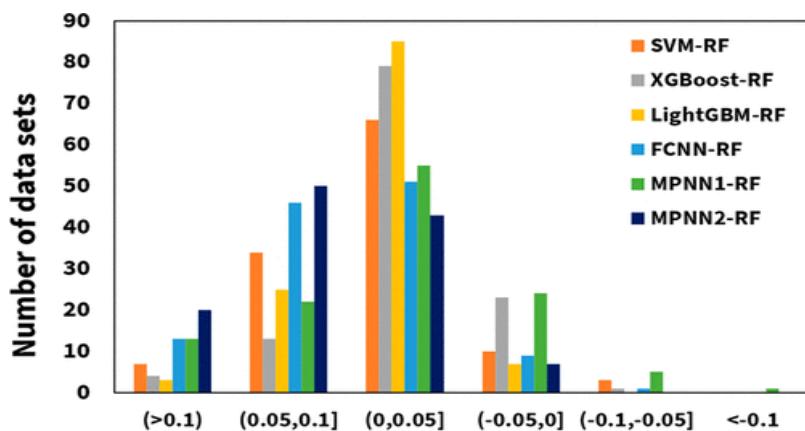


Fig. 4. Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion^[17]

These attributes collectively provide a comprehensive profile of compounds and their behaviors, facilitating the development of predictive models to estimate ADMET properties and predict the potential toxicity or efficacy of drug candidates. The choice and relevance of attributes often depend on the specific research question, the nature of the compounds, and the goals of the predictive modeling task.

V. CONCLUSION

This survey comprehensively explores the landscape of predictive modeling for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of drugs using machine learning (ML) techniques. The review underscores the transformative potential of ML in revolutionizing drug discovery and development processes. Through an in-depth analysis of various datasets, methodologies, and advancements in ML algorithms, it is evident that predictive modeling holds promise in efficiently evaluating ADMET properties, aiding in the identification of drug candidates while mitigating risks associated with toxicity and inefficacy. The review highlights the significance of interdisciplinary collaboration, emphasizing the need for standardized frameworks and robust experimental designs to ensure the reproducibility and generalizability of predictive models. Challenges such as interpretability, data quality, and the integration of domain knowledge remain crucial areas for further exploration and refinement. Moreover, the versatility of ML algorithms, coupled with their ability to decipher complex biological interactions, opens avenues for precision medicine and targeted drug design. However, it's imperative to acknowledge that while ML techniques offer tremendous potential, they complement rather than replace human expertise in the decision-making process.

The future of predictive modeling in ADMET properties using ML appears promising, paving the way for accelerated drug discovery, enhanced drug safety, and personalized therapeutics. As this field continues to evolve, it is crucial to foster collaborative research efforts, leverage emerging technologies, and address existing challenges to realize the full potential of predictive modeling in optimizing drug development. This conclusion serves to summarize the key takeaways from the survey paper, emphasizing the opportunities, challenges, and future prospects in the realm of predictive modeling for ADMET properties using machine learning techniques.

REFERENCES

[1] Cheng, F., et al. “*Prediction of drug-target interactions and drug repositioning via network-based inference*”. PLOS Computational Biology, 8(5), e1002503, 2012.

[2] Chen, H., et al. “*Deep learning in label-free cell classification*”, Genome Biology, 2018, 19(1), pp. 1-10.

[3] Mayr, A., et al. “*DeepTox: Toxicity prediction using deep learning*” Frontiers in Environmental Science, .2016, pp.80-85.

[4] Xu, Y., et al. “*Deep learning for drug- induced liver injury*” Journal of Chemical Information and Modeling, 2018 58(3), pp. 487-492.

[5] Wallach, I., & Heifets, A. “*Most ligand-based classification benchmarks reward memorization rather than generalization*” Journal of Chemical Information and Modeling, 2018, 58(5), 916-932.

[6] Yang, K.,& Swanson, K.“*Comparative analyses of deep learning and machine learning models for prediction of chemical toxicity*” Journal of Chemical Information and Modeling, 2018, 58(8), 1553-1562.

[7] Zhang, L., Tan, J., Han, D., Zhu, H., & Fromm, M. F. (2016). “*Prediction of drug-drug interactions through drug structural similarities and interaction networks incorporating pharmaco kinetics and pharmaco dynamics knowledge*” Journal of Chemical Information and Modeling, 56(12), 2446-2456.

[8] Ekins, S., et al. (2015). “*Progress in predicting human ADME parameters in silico*” Journal of Pharmacological and Toxicological Methods, 71, 126-145.

[9] Fourches, D., et al. “*Chem informatics analysis of assertions mined from the literature that describe the drug-induced liver injury in different species*” Chemical Research in Toxicology, 2010, 23(1), 171-183.

[10] Hughes, J. D., et al. (2008). “*Principles of early drug discovery*”, British Journal of Pharmacology, 152(1), 38-44.

[11] <https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94>

[12] Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets | <https://pubs.acs.org/doi/abs/10.1021/acs.jcim.8b00785>

[13] <https://www.mdpi.com/1420-3049/27/9/3021>

[14] <https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1568>

[15] <https://www.sciencedirect.com/science/article/pii/S2001037021003421>

[16] <https://pubs.acs.org/doi/10.1021/acsomega.1c05203>

[17] <https://pubs.acs.org/doi/abs/10.1021/acs.jcim.3c00160>

Improving Voice Assistant User Experience through Context Awareness and Personalization

Hetvi Tank¹, Kirit Modi², Ankur J. Goswami³

MTech. CE(SE), SPCE / Sankalchnad Patel University, Visnagar, India¹
 IT Department, SPCE / Sankalchnad Patel University, Visnagar, India²
 CE Department, SPCE/Sankalchnad Patel University, Visnagar, India³

hetvitank0@gmil.com¹, kjmodi.fet@spu.ac.in², ajgoswami.fet@spu.ac.in³

Abstract: Context awareness, the system's ability to comprehend and adapt to the user's surroundings, is harnessed through cutting-edge natural language processing, environmental sensing, and machine learning algorithms. To achieve context-awareness, the proposed system employs advanced natural language processing and machine learning algorithms.

The incorporation of context-aware features allows voice assistants to grasp the situational nuances of a conversation. This involves considering the user's prior commands, inquiries, and the broader context of the dialogue. Such awareness enables the voice assistant to provide more relevant and coherent responses, creating a seamless and natural conversation flow.

Personalization plays a crucial role in making voice assistants not only responsive but also adaptive to the unique needs and preferences of each user. Through the analysis of user behavior, preferences, and historical interactions, voice assistants can learn and evolve over time, delivering a more personalized and user-centric experience. This tailored approach not only enhances user satisfaction but also fosters a sense of connection between the user and the voice assistant.

In conclusion, the convergence of context-aware features and personalized responses represents a paradigm shift in voice assistant design. This approach holds the potential to elevate user satisfaction, foster more natural and intuitive conversations, and redefine the future landscape of voice interaction technology.

Keywords: customer satisfaction, expectations confirmation theory, digital assistants, privacy concerns, artificial intelligence.

I. INTRODUCTION

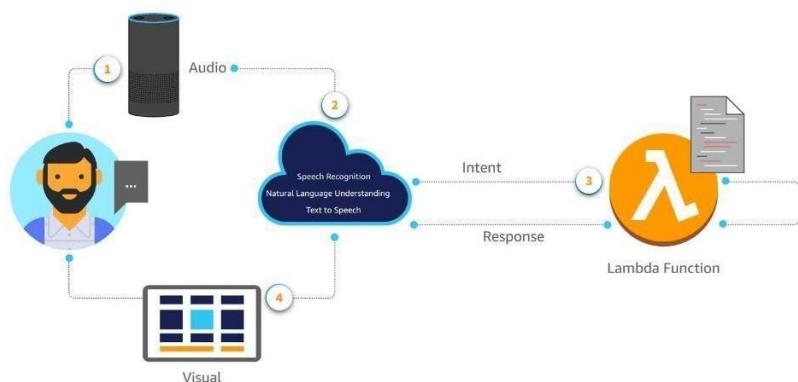


Fig. 1. Alexa Flow Chart

- To enhance the user experience of a voice assistant by leveraging context awareness and personalization.
- This project seeks to improve user interaction with a voice assistant by making it context-aware. They are often discussed in terms of the "5W" framework, which stands for Who, What, When, Where, and Why.

TABLE I
PROPOSED METHOD

5W of ETL		
No	Condition satisfied	Required
1	1234	0
2	234	1
3	123	0
4	124	3
5	134	0
6	12	3
7	13	0
8	14	3
9	24	13
10	23	1
11	1	3
12	2	13
13	3	1
14	4	123

1	what(Sales, production)
2	who(material)
3	when(date, period)
4	which(arithmetic)
5	where(location)

- The objective of the project is to create an AI, the total elastic application that can capture userspoken/written queries and respond to them accordingly related to sales data.
- This is our proposed 5W structure which fills the gap of fulfilment and satisfies the whole query.
- With this system, we can capture anything in order to create dynamic AI.

II. ALGORITHM

A. *Recognition of Named Entities*

Entity identification is another important method for examining natural language space. It is responsible for grouping individuals in unstructured text into a number of predefined categories. This covers people, organisations, dates, sums of money, and so forth.

B. *Summarising the Text*

NLP techniques can help with the summarisation of large amounts of text, as the term suggests. Text summarisation is frequently used in contexts like research projects and news headlines.

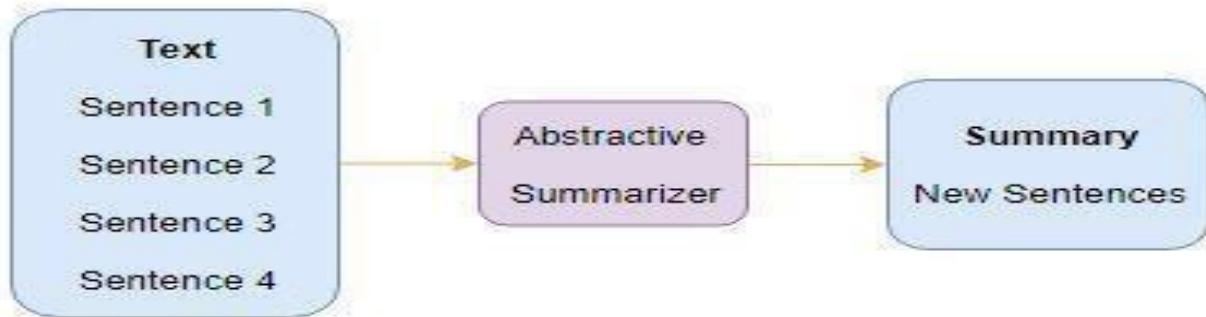


Fig 2. Text summarization

C. Word Bag

This paradigm treats a text as a bag (multiset) of words, preserving multiplicity while ignoring syntax and even word order. The bag of words paradigm essentially creates an incidence matrix. A classifier is subsequently trained using these word frequencies or instances as characteristics.

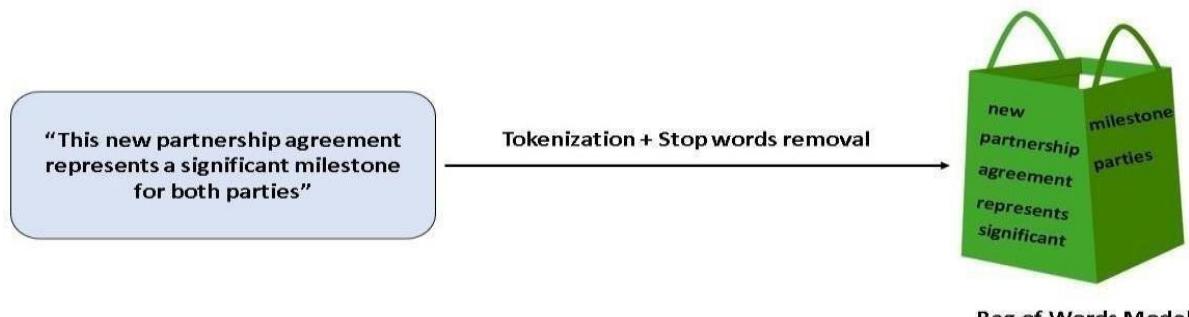


Fig 3. Bag of words

D. Keyword Extraction

One of the most crucial tasks in natural language processing is keyword extraction, which is in charge of figuring out different ways to extract a sizable number of words and phrases from a collection of texts. All of this is done to help with the pertinent and orderly arrangement, archiving, searching, and retrieval of content.

III. EXISTING FRAMEWORK ARCHITECTURE

A. Alexa Skills Kit (ASK):

- Framework: ASK is Amazon's official framework for building Alexa skills. It serves as the foundation for developing voice interactions and applications for Alexa-enabled devices.

B. AWS Lambda

- Serverless Backend: AWS Lambda is a key component of Alexa skill development. It allows you to run code in response to voice requests from Alexa. Most Alexa skills use AWS Lambda as their backend service.

C. Alexa Developer Console

- Development Environment: The Alexa Developer Console is an online platform where you design, build, test, and manage your Alexa skills. It provides a graphical interface for configuring your skill and testing it with simulated voice interactions.

D. Interaction Model

- Architecture: The interaction model defines how Alexa understands and responds to user input. It includes intents, slots, and sample utterances. You design and configure this model in the Alexa Developer Console.
- Process: After developing and testing your skill, you can submit it for certification through the Alexa Developer Console. Amazon's certification process ensures that your skill meets its guidelines and quality standards.

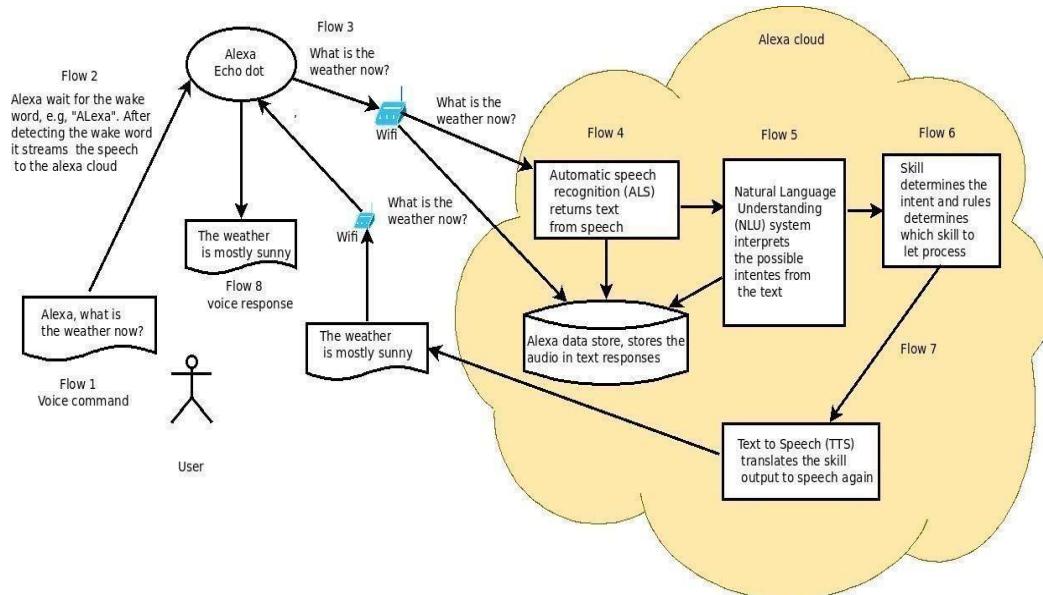


Fig. 4. Architecture of Alexa

A. Motivation

The underlying drive of this research is to offer valuable insights and actionable solutions to real-world challenges. By tackling genuine problems, we seek to make meaningful contributions that address pressing issues and generate practical outcomes. This motivation propels our efforts to drive positive change and provide tangible benefits to individuals, communities, and society at large.

IV. LITERATURE REVIEW

Sr. No	Authors and references	Paper Title/Journal	Main ideas	Simulation	Advantages	Limitations
1	Tom Brill Laura Munoz	An analysis of user satisfaction with artificially intelligent applications, including Siri, Alexa, and others	Businesses and consumers alike are quickly adopting digital assistants like Alexa, Siri, and others. Digital assistants, also known as conversation-enabled applications, are speech-enabled integrated artificial intelligence (AI) technology.		The expectations confirmation process's importance in assessing customer satisfaction is supported by this study. Additionally, it offers managers insights into the factors that influence and the level of	Customer satisfaction is not the sole goal in the evolving landscape of digital assistants. Future research should explore diverse user dimensions, preferences, and

					client satisfaction with digital assistants. In order to help users get more out of digital assistants, this study also suggests areas for management to concentrate its emphasis.	generational differences to understand the full scope of Opportunities and challenges in this Rapidly advancing field.
2	Langzhou Chen, Volker Leutnant	Bootstrapping an Acoustic Model Through Semi-Supervised Learning	Speech recognition, semi-supervised training	Alexa SkillSet	It uses semi-supervised speech recognition.	Limited labeled data in semi-supervised acoustic model bootstrapping can lead to suboptimal performance, impacting accuracy and robustness. time-sensitive.
3	Che-Wei Huang, Roland Maas, Sri Harish Mallidi, Björn Hoffmeister	An Investigation to Enhance Device-Directed Speech Recognition for Frictionless Human-Machine Communication	This study updates earlier research on distinguishing utterances meant for Alexa, or device-directed speech detection.		Using a DNN-LSTM model using acoustic and automated speech recognition (ASR) decoder features as input, we tackle the job, which can be described as a binary utterance-level classification problem.	Effectively integrating diverse acoustic and ASR decoder features for binary utterance-level classification using a DNN-LSTM model, which may pose challenges and impact overall classification accuracy.
4	AbdalGhani Abujabal, Judith Gaspers	Recognition of Named Entities by Neural Word Units	In spoken language technology applications, such as voice-activated smart assistants like the Google Home or Amazon Echo, Named Entity Recognition (NER) is a crucial task.		We calculate precision, recall, and F1 scores per token using the CoNLL script [3] to assess our models. We present the mean F1 score.	Limitation in neural named entity recognition from sub-word units could be a reduced ability to capture nuanced semantic relationships due to the model's reliance on sub-word representations, potentially leading to less accurate

						identificationn of named entities in complex contexts.
5	Jaime Lorenzo Trueba, Thomas	Towards achieving robust universal neural vocoding	The advent of several autoregressive models [1, 2, 3, 4,5, 6] has largely led to a recent paradigm shift in statistical parametric speech synthesis (SPSS), which is now known as statistical speech waveform synthesis (SSWS) [5].		This evaluation considered 2 female and 1 male speaker (the ones used to train the 3Spk vocoder).	According to the results, the suggested vocoder can perform noticeably better than speaker-dependent vocoders in clean, unseen settings (relative MUSHRA score of 98%) after being trained on a variety of materials (74 speakers and 17 languages, all recorded in a studio setting).
6	ChiehChi Kao, Ming Sun, Yixin Gao	Small-footprint Sub-band Convolutional Neural Networks Classific action, spoken	The quick development of publicly accessible datasets (such as speaker identification [2, 3], acoustic event classification/detection [4, 5], spoken term classification [1], etc.) has made it possible to train state-of-the-art models for a variety of acoustic applications using a significant quantity of annotated data. In the areas of speaker identification [2, 3], speech recognition [7, 8], keyword spotting [6], and acoustic event categorisation [9], CNN-based architectures have attained cutting-edge results.	AlexaSkill Set	They investigated and presented a sub-band CNN architecture for the classification of spoken terms. .	effectively capturing nuanced acoustic features for small-footprint spokenterm classification using sub-band Convolutional Neural Networks, potentially impacting accuracy in diverse acoustic environments.

V. PROPOSED FRAMEWORK

A. Problem Statement

Alexa's personalization and context-awareness could involve addressing the need for improved adaptive capabilities. This may include developing mechanisms to enhance Alexa's understanding of individual user preferences and refining its ability to dynamically adapt responses based on real-time context. Challenges may include optimizing the balance between personalization and privacy, as well as ensuring seamless integration of context-aware features for a more natural and effective voice-assistant interaction.

B. Technology

- Alexa Developer Console
- AWS Lambda

C. Alexa Developer Console and AWS Lambda

The Alexa Developer Console and AWS Lambda form a crucial duo in the development and deployment of Alexa Skills. The Alexa Developer Console, as a web-based platform, serves as the central hub for skill creation, management, and testing. Developers utilize its features to design voice user interfaces, define interaction models, and simulate user interactions for testing. Moreover, the console facilitates the certification process, ensuring that developed skills meet the necessary standards before publication. On the other hand, AWS Lambda, a serverless computing service, plays a pivotal role in executing the code associated with Alexa Skills. Developers commonly use Lambda as the endpoint for their skills, where code for handling Alexa requests and generating responses is hosted. The serverless nature of Lambda allows for automatic scaling based on usage, providing scalability and cost-effectiveness. Additionally, AWS Lambda enables seamless integration with other AWS services, offering a robust infrastructure for Alexa Skill execution.

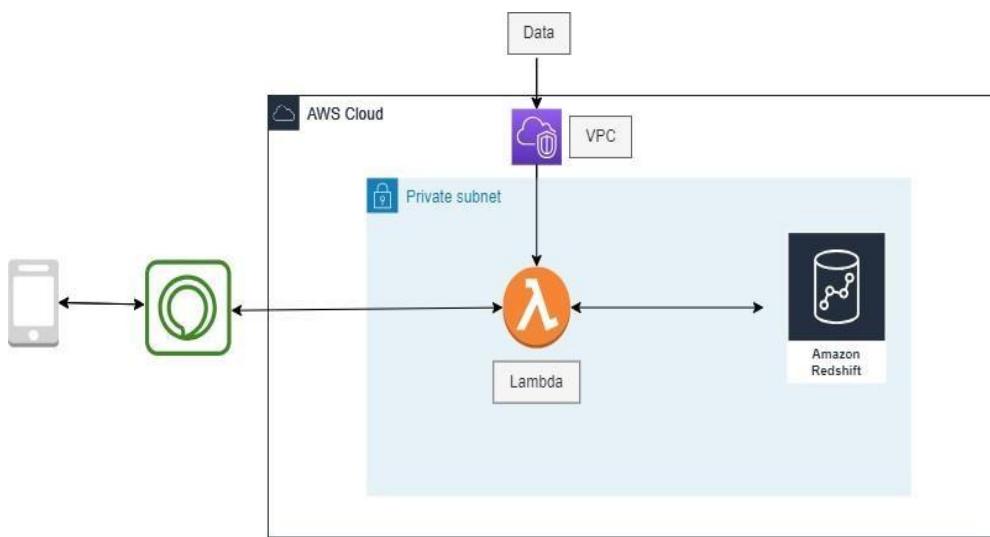


Fig 5. Architecture of Voice Assistant User Experience through Context-Awareness and Personalization

D. Project Planning and Design

- Define the objectives and scope of your Alexa skill. Determine the key functionalities and user interactions.

E. Skill Configuration

- Access the Alexa Developer Console and create a new skill project. Configure the basic settings of your skill, including the skill's name, language, and region.

F. Lambda Function Integration

- Create an AWS Lambda function to serve as the backend for your skill.
- Configure the Alexa Developer Console to link your skill to the Lambda function.

G. Code Development

- Write the backend code for your skill's logic in the programming language supported by AWSLambda (e.g., Node.js, Python, Java).

H. Certification and Publishing

- Submit your skill for certification through the Alexa Developer Console.

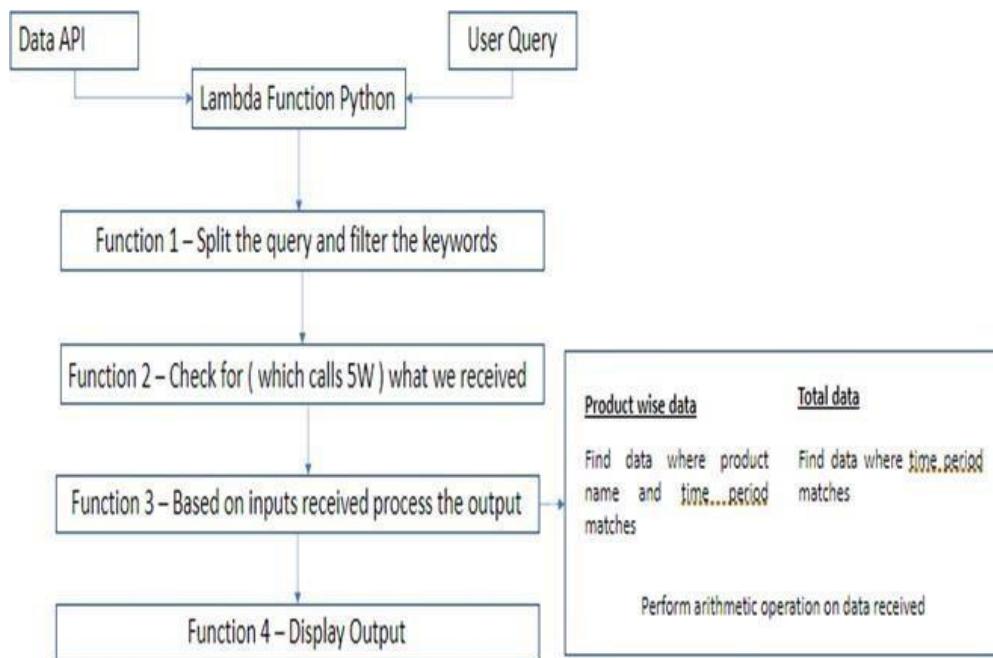


Fig. 6. Flow of Improving Voice Assistant User Experience through Context-Awareness and Personalization

Privacy and Security: Using a Virtual Private Cloud (VPC) is a vital feature of enhancing safety in a cloud environment. VPC provides a private and isolated network space within the cloud, allowing you to control and secure your resources effectively. Here's how VPC contributes to security:

Network Isolation: VPC enables you to create isolated network environments, ensuring that your resources are not directly accessible from the internet. This isolation adds an extra layer of security by preventing unauthorized access.

Controlled Access: To manage incoming and outgoing traffic, you can use VPC to build and configure security groups and network access control lists (ACLs). This allows you to specify which IP addresses or ranges can access your resources, reducing the attack surface.

VPN and Direct Connect: Using a Virtual Private Network (VPN) or AWS Direct Connect, VPC enables you to create secure connections among your on-premises infrastructure and your cloud property. This guarantees safe data transfer and communication.

Encryption: Implementing encryption for data in transit and at rest is crucial for security. VPC provides options for encrypting communication between instances within the VPC and offers integration with other AWS services that support encryption.

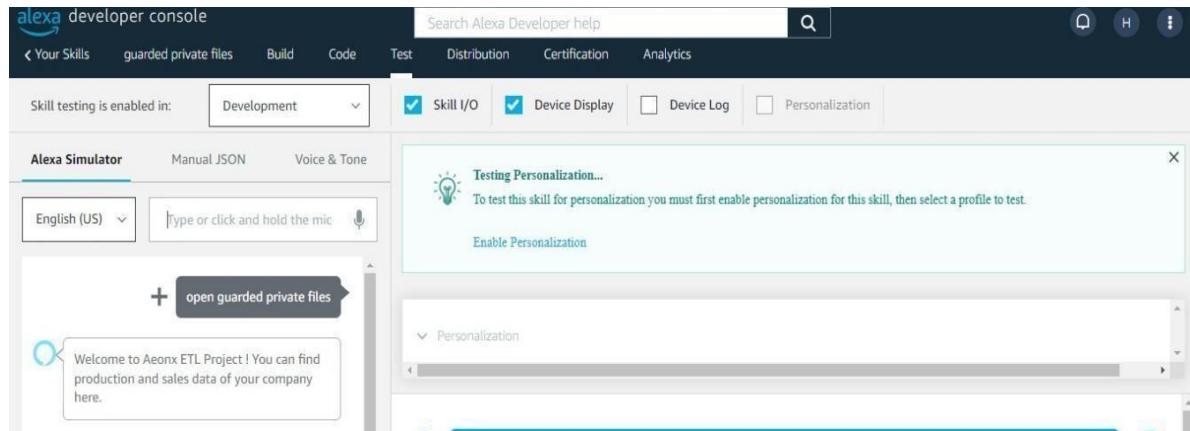


Fig. 7. Wake word

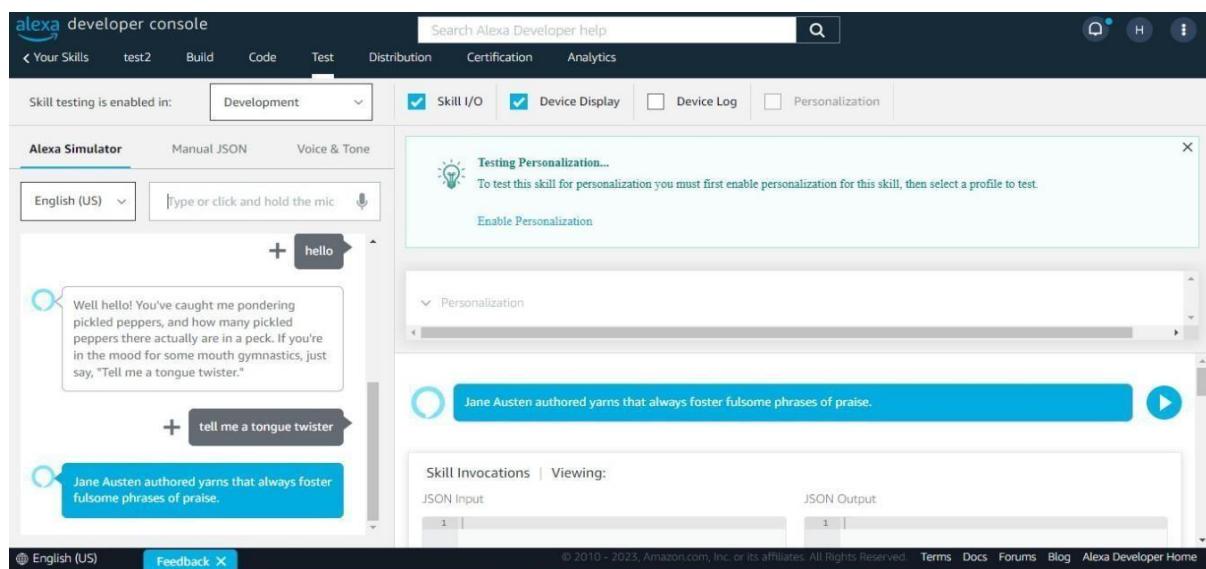


Fig. 8. Custom questioning

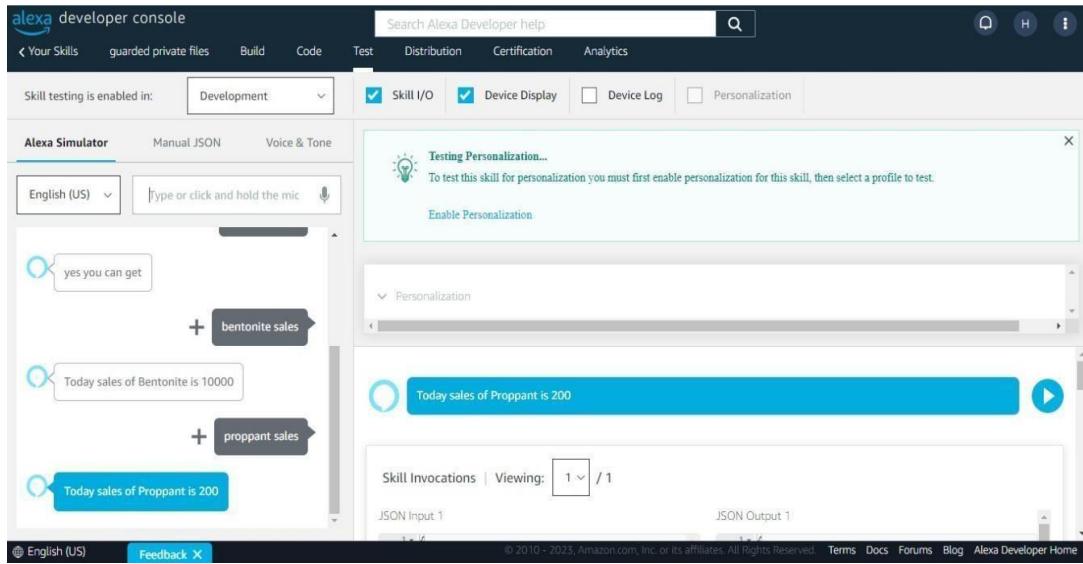


Fig. 9. Custom questioning

Controlled Access: With VPC, you can define and configure security groups and network access control lists (ACLs) to control inbound and outbound traffic. This allows you to specify which IP addresses or ranges can access your resources, reducing the attack surface.

VPN and Direct Connect: VPC permit you to set up secure connections between your on-premises infrastructure and your cloud resources using Virtual Private Network (VPN) or AWS Direct Connect. This ensures secure communication and data transfer.

Encryption: Implementing encryption for data in transit and at rest is crucial for security. VPC provides options for encrypting communication between instances within the VPC and offers integration with other AWS services that support encryption.

VI. CONCLUSION

Personalization takes context awareness a step further by tailoring responses and recommendations based on the user's individual preferences, historical data, and behavior patterns. By learning from past interactions, the voice assistant can adapt its responses to align with the user's unique preferences, creating a more personalized and human-like experience.

The focus of current marketing and IT literature has long been on customer happiness. The theoretical underpinnings of consumer satisfaction in relation to a new AI technology platform integrating digital assistants are better understood thanks to this study.

In the rapidly evolving landscape of AI-powered digital assistants, improving user experience through context awareness and personalization has emerged as a pivotal strategy. This thesis explored how tailoring interactions based on individual preferences, historical data, and behavioral patterns can significantly enhance user satisfaction and engagement. By leveraging context-aware technologies and personalization frameworks, voice assistants can move beyond generic responses to create dynamic, human-like interactions that resonate with users on a deeper level.

VII. FUTURE SCOPE

In the future, improving the Voice Assistant User Experience through context awareness and Personalization holds promising prospects. Advanced context-aware features could encompass real-time environmental data and emotional cues, contributing to a more adaptive user experience. The integration of multimodal interactions, combining voice with gestures or facial expressions, could offer a comprehensive and intuitive interface. Future systems might focus on continuous learning algorithms to dynamically adapt to evolving user preferences, ensuring a personalized and evolving interaction over time. Privacy-preserving personalization will be crucial, addressing concerns about data security as personalization becomes more intricate. Tailoring

voice assistants to specific domains, fostering collaboration with third-party services, and prioritizing accessibility for diverse user groups are avenues for development. Additionally, recognizing and adapting to global cultural nuances and integrating with emerging technologies like augmented reality could further enhance the inclusivity and capabilities of voice assistants. In summary, the future holds potential for more sophisticated, adaptive, and culturally aware voice assistant interactions, transforming the landscape of human-computer interaction.

- Advanced Contextual Understanding: Future voice assistants can leverage deeper integration with IoT devices and smart environments to enhance contextual understanding, enabling more proactive and intuitive interactions.
- Dynamic Adaptation: Real-time learning algorithms can be developed to adapt responses dynamically based on situational context, such as changes in mood, location, or time of day, ensuring highly relevant and empathetic interactions.
- Multimodal Personalization: Expanding beyond voice, future systems can incorporate visual and sensory inputs like facial expressions, gestures, and biometric data to deliver holistic personalization.

REFERENCES

- [1] Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., and Bogaard, T. (2016). “Building event-centric knowledge graphs from the news. *Web Semantics: Science, Services, and Agents on the World Wide Web*” In Press.
- [2] Knight, K., & Langkilde, I. “Preserving ambiguities in generation via automata intersection” In AAAI/IAAI (pp. 697-702).
- [3] Liddy, E. D. (2001). Natural language processing.
- [4] Che-Wei Huang, Roland Maas, Sri Harish Mallidi, Björn Hoffmeister., “A Study for Improving Device-Directed Speech Detection toward Frictionless Human-Machine Interaction”, 2019.
- [5] Thomas M. Brill, Laura Munoz & Richard J. Miller Siri, Alexa, and other digital assistants: “A study of customer satisfaction with artificialIntelligence applications”, 2019.
- [6] D. Reich, F. Putze, D. Heger, J. Ijsselmuiden, R. Stiefelhagen, and T. Schultz, (2011) “A real-time speech command detector for a smart control room,” in Proceedings of Interspeech
- [7] E. Shriberg, A. Stolcke, D. Hakkani-Tr, and L. Heck, “Learning when to listen: Detecting system-addressed speech in human-human-computer dialog,” in Proceedings of Interspeech, 2012.
- [8] T. Yamagata, T. Takiguchi, and Ariki, “System request detection in human conversation based on multi-resolution Gabor wavelet features,” in Proceedings of Interspeech, 2009.
- [9] H. Lee, A. Stolcke, and E. Shriberg, (2013) “Using out-of-domain data for lexical addressee detection in human human-computer dialog,” in Proceedings of HLT-NAACL,
- [10] Wang, D. Hakkani-Tur, and G. Tur “Understanding computer directed utterances in multi-user dialog systems,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

A Survey of Intrusion Detection System in Wireless Sensor Networks

**Mehul S. Patel¹, Govind V. Patel², Jayesh M. Mevada³,
Ankur J. Goswami⁴, Rupal R. Chaudhari⁵**

Assistant Professor, Department of CE & IT, Sankalchand Patel University, Visnagar, India^{1,2,3,4,5}

mspatel.fet@spu.ac.in¹, gvpatel.it@spcevng.ac.in², jmmevada.ce@spcevng.ac.in³,
ajgoswami.fet@spu.ac.in⁴, rrchaudhari.ce@spcevng.ac.in⁵

Abstract: Remote sensor networks is more valuable where we can't lay out the conventional organization. The remote sensor network comprises of sensor hub, which has detecting parts, on-board handling, conveying and stockpiling capacities. Sensor hubs have less memory and less figuring power. Due to the large number of sensor nodes used in a variety of applications, there may not be a global identification number for sensor nodes. Every sensor hub detects the data and through information collection sends this data to a baser station. Remote sensor networks are open in nature and there are no cryptographic systems or security for sensor hubs to shield from outside Assaults. So we required the interruption recognition framework should be presented. Sensor hubs have restricted assets so we require Interruption distinguish frameworks such as lightweight and productive. Interruption identification conspires in a remote sensor network to distinguish the pernicious hub or gatecrasher. This paper presents a review of Interruption Discovery Frameworks in Remote Sensor Organizations. Out of a few identification methods, this paper centers on signature-based, Oddity based and half, and half-based procedures.

Keywords: intrusion detection, Sensor security, wireless sensor network, sensor node, malicious node, attacks

I. INTRODUCTION

Detecting is an interaction to gather the various sorts of data. Sensitive data can be gathered using numerous wireless sensor networks. Because they work with restricted assets and are left unattended, sensor nodes are more vulnerable to malicious intrusion and attacks. An intrusion can easily spy on sensor transmissions thanks to advanced remote communications [1]. In a wireless sensor network, sensor nodes are deployed densely to collect information. Sensor hub gather data as well as act in-network examination, relationship and combination of its own data and data or information from other sensor hubs. Sensor nodes don't just talk to each other; they also talk to the base station, allowing them to share information with other handling, visualization, and capacity frameworks [1].

In numerous sensor network applications, Sensor hubs work in distant regions and brutal climates, without infrastructural support or without fix and upkeep. Sensor hub having low energy, specially appointed sending, unattended activity makes him helpless.

In Rest of the Paper, Talk about the Security issues connected with Remote Sensor Organization (WSN), Security Objectives, Outline of Interruption Location Framework, and Related Work to Interruption Discovery.

II. SECURITY ISSUES OF WSN

In Remote sensor Organizations, The Sensor hubs are defenseless against various kinds of assault that endeavor to think twice about the organization and take data from hubs. There are various sorts of assaults, for example, inside/Outside, Dynamic/Latent, Host, and Organization. This Assault Can be named underneath at various layers to Relating Convention.

1. The Physical Layer: Sticking Assault, Physical Catching, altering.
2. Information interface Layer: Crash Assault, Weariness Assault.
3. Network Layer: Flooding Assault, Dark opening Assault, Dim opening Assault, Sybil Assault, Wormhole Assault, Surging Assault, Particular Sending, and Replay Assault.
4. Transport Layer: De-synchronization Assault, Meeting Commandeering Assault.
5. Application Layer: Misleading Information Sifting Assault, Traffic Investigation, and Bundle Following.

Security has a fundamental Concentration for Energy and Asset Obliged WSN Because of Different Basic Security Applications. Secure Correspondence is expected for hubs and Organizations. In numerous Applications, For example, front line Observation and evaluation, target following, Checking and noticing Catastrophe zones, any encroachment of Safety, splitting the difference of data or Deceiving Data can make an Intense Difference.

In Sensor Organization, Sensor hubs are asset Imperatives, for the most part, utilized in the far-off region and unattended activity makes them Defenseless against Security Assaults. So Security Objectives are Set for WSN and attempts to safeguard them. The four security goals for sensor frameworks are chosen as Secrecy, Respectability, Confirmation, and Accessibility (CIAA).

A. Confidentiality

Secrecy implies anticipation of unapproved admittance to data. In sensor organization, sensor hubs gather information and generally send this information to the base station through multi-bounce. In such a climate framework, we should keep up with the mystery of data.

A sensor organization shouldn't truly transmit its information to its encompassing organization. For instance, the interloper places a malignant hub in an organization for acquiring data. Encrypting data with a secret key to provide a Secure Communication Channel in WSN allows for the concealment of sensitive data.

B. Integrity

Information respectability guarantees that information can't be adjusted or changed during transmission. Therefore, another network should not be able to alter or change the data in the sensor network. The gatecrasher embeds a pernicious hub into the organization and attempts to embed fake information or tempestuous circumstances because of a remote channel that causes harm or loss of information. Information trustworthiness can be guaranteed by utilizing hash capabilities and message validation codes.

C. Authentication

The process of confirming the sensor node's identity is known as authentication. Confirmation guarantees the beneficiary hub that the information is from the hub that it professes to be from. The enemy can embed counterfeit information to arrange through a pernicious hub. So the Getting Hub can be ready to affirm the character of the hub from which it's gotten the information.

Information verification can be accomplished through symmetric or awry systems. That shares a secret key between the sender and the receiver to compute the MAC. Source Ascertain Macintosh Utilizing secret key, message information and attach to Information. The Getting hub ascertains the Macintosh and confirms the shipper.

Because of the Asset Limitation of Sensor Organization, it is hard to carry out such a Complex Cryptographic system.

D. Availability

When a network and its application are considered to be available, they can carry out any task without being hampered in any way. The Sensor hub stays accessible for working after some piece of the disappointment of the organization. Complex security systems are expected to keep the accessibility of the organization. Compromised base stations or cluster heads pose a threat to the sensor network. The most crucial aspect of the network's continuous operation is availability.

Remote Sensor Organization Security has been tested. The Sensor Network has various special difficulties like asset imperatives, Absence of focal control, distant area, and mistaken inclined Correspondence. So Sensor network requires different Security Innovations, Key administration, Counteraction procedures, and interruption Location Frameworks.

The answer for security assaults against the organization includes primary three parts [2]:

- Avoidance: In this given component stop the assault before it hurts the organization.
- Observation: Anticipation is the primary line of safeguard in the organization. In the event that the gatecrasher sidesteps the guard, a framework is coming up short against the assault. So the recognition instrument requires tracking down a pernicious hub or compromise hub.
- Moderation: After Location, the reaction module disconnects the noxious or compromise hub from the organization.

III. INTRODUCTION TO INTRUSION DETECTION

Interruption is the cycle wherein an unapproved substance penetrates the privacy, information honesty, and accessibility of the sensor network effectively or latently. Interruption identification is the system to recognize those who abuse the organization without approval and, furthermore, those who erroneously mishandle their honors.

An Interruption Recognition Framework (IDS) is a method that screens hub exercises and organizational conduct at various

layers. In most WSN applications, WSN is a multi-jump-appropriated activity, which makes it more troublesome in terms of assault location and avoidance. Because of the low-registering working state of WSNs, the vast majority of safety innovation utilized for wired or customary organizations is not applied to WSNs. Assuming that interruption happens, the trade-off hub alleviates the secret data like secure keys, information, and so forth. IDSs attempt to detect an attack and serve as a second line of defense. It sounds an alarm when it detects any illegal activity. The reaction module disengages the pernicious hubs from the organization.

There are three fundamental interruption location strategies:

A. *Abnormality Discovery:*

The aim of the anomaly detection method is to locate abnormal activities. In this the identification, when it discovered some deviation from ordinary way of behaving is hailed as an abnormality and creates the admonition message for the framework. The Impediment of this framework is that network exercises quickly change, so the framework produces a high bogus alarm message.

B. *Abuse-based Location:*

This Identification procedure is otherwise called mark or information-based strategy. In this procedure, Information on past distinguished assaults and shortcomings of the framework is utilized as a reference to identify future assaults. For instance, there are different times login fizzled, it identifies as savage power secret key assault. This method productively and precisely distinguishes the known assault with less bogus positive caution. The Weakness of this framework is that it isn't ready to identify another sort of assault whose mark or rules not accessible.

C. *Particular rule-based Discovery:*

An Anomaly detection strategy is somewhat comparable to this method. In this procedure, the regular Profile of the organization is described physically, so it gives less mistaken up-sides rate. This procedure tries to divide best between signature-based and abnormality location-based disclosure approaches by endeavoring to explain deviations from average social plans that are made not either by the planning data or by the AI system. The improvement of attack or show detail is finished physically. So it requires greater investment. Therefore, this will be a disadvantage of this strategy.

IV. RELATED WORK

In this segment, we have talked about existing techniques that are utilized for interruption location.

A. *Using the Weighted trust technique*

In this approach [3], The Trust values are allocated to every hub in the organization. The Group head keeps up with the trust worth of its associated hubs. The trust incentive for every hub shifts from 0 to 1. Higher trust esteem, sensor hub is more trust commendable. The Trust esteem is refreshed by bunch head in light of information obtained from sensor hubs. The malignant hub decides, assuming the hub has a lower weighted limit esteem than the base edge esteem. The accuracy of this method is very high if the number of malicious nodes is less than. Be that as it may, assuming malevolent hubs are high its exactness turns out to be extremely low, and pernicious hubs are detached from the legitimate hub. The principal Supposition in this approach is that the base station is secure and non-wrong. The adversary gains control of the entire network if the base station makes a concession.

B. *Neighbor based approach*

The Neighbor together methodology [4] is based with respect to the foremost that sensor hubs are thickly sent so near one another and have a similar sort of conduct. The Hub is recognized as pernicious in the event that its exercises are essentially not the same as its neighbors. The Creator has laid out the IDS for a network that utilizes the parcel conveyance proportion, got signal strength, Bundle dropping proportion, and got to send apportion to recognize the sticking, particular sending, and hi flood assaults. When neighbors work together, this neighbor-based detection method has high accuracy.

C. *Mobile Agent-Based Approach*

In this Approach [5], the Detection Mechanism is based on the mobile agent, which employs classification algorithms to

locate WSN intrusion detection. This order calculation is rule-based and uses an information mining design. They use information mining, a design matching method involving measurable information for recognizing malevolent hubs. They utilize K-implies to guileless.

Bayes and SVM Calculation. The reenactment results show that a portable specialist-based approach is better.

D. Cluster-based half and half-discovery

In this exploration [6], an Interruption Discovery Framework made in the group head is proposed. The half-and-half interruption discovery Instrument contains three modules. The Main peculiarity Location Module is used to check whether the bundle is typical or unusual. Second Module misuse detection, which determines type detection by analyzing abnormal packets.

The Consequence of two identification modules is coordinated with a dynamic module to track down the interruption and the sort of interruption. The Dynamic module gets back to trough to follow-up treatment. The detection rate and accuracy of the proposed system are satisfactory.

E. Knowledge-based Approach

In this Approach [7], the sensor network is separated into various bunches and each group has a Group head (CH). The Bunch's head screens all its part hub conduct and store information as occasions. The CH sends this occasion's information to the base station. The knowledge base is created and some functions are carried out on events data by the base station.

This information base is utilized by the CH utilizing a deduction motor to track down malignance. When the Cluster head detects any illegal activity, it initiates events to identify the attack thanks to continuous monitoring. The base station gives a status of occasion to CH. The CH closes any malignancy of a hub, it detaches the malevolent hub and broadcasts this data to different Groups.

F. Data mining Approach

In this Approach [8], the Interruption Recognition Framework contains two phases (a) Profiling and (b) abuse discovery. In the profiling stage, the data or conduct of the sensor hub is gathered by the Focal specialist and becomes mindful of the organization's geography. The local agent that monitors nodes is chosen by the central agent. Neighborhood specialist keeps up with the ordinary profile of sensor hubs. All data gathered is changed over into design acknowledgment.

Each local agent uses the normal profile created in the previous section for anomaly-based intrusion detection in the second phase. A nearby alarm is created when the hub acts uniquely in relation to the ordinary profile. The focal specialist performs abuse location and approves the neighborhood alert for the entire sensor organization. The Motivation behind ready approval is to lessen the misleading positive rate.

G. Hierarchical Energy productive methodology

In this Approach [9], every sensor hub sends a control bundle to the base station toward the finish of the transmission stage. Each control bundle having the hub id and N number of parcels ships off the bunch head. Sensor hub can straightforwardly send them control parcel to the base station, however, it very well may be energy wasteful and add additional above to the organization. So Second batch head (SCH) is chosen to communicate control bundles to the base station. The Choice of SCH depends on hub energy savings.

The Base station thinks about the complete bundles from the group head to the amount of N number of parcels from every hub to the bunch head. In the event that the base station finds a dark assault, it sends a caution message to its all sensor hubs. A Sensor hub keeps up with its dark opening table to prohibit distinguished CH from the next CH and SCH Political decision. This Proposed Approach is Energy-proficient and great discovery rate.

H. A Random Neural Network-Based Approach

In this paper [10], the author uses Random Neural Networks (RNN) to implement an intelligent security architecture and create an intrusion detection mechanism. Perceiving anomaly in view of conduct examination includes the learning of the normal activity of the framework and Recognition of any occasion that veers off from the recently scholarly model. Along these lines, obscure security assaults can likewise be distinguished which are routinely left undetected by the mark-based procedures.

In This Approach, a Sharp Regulator is used to take care of data and find Variety from the standard. This Approach Actually perceives the presence of any dubious sensor hub and peculiar action in the base station with high exactness and insignificant irrelevant execution above.

I. Game-Based Complex Methodology

The proposed framework [11] occupations a mix of detail rules and a lightweight brain coordinate-based irregularity location module to find the vindictive hub. Besides, the framework models the collaboration between the IDS and the sensor hub as a two-player non-helpful Bayesian game. This allows the IDS to embrace probabilistic noticing methodology in view of the Bayesian Nash Equilibrium of the entertainment and as such, decline the volume of IDS traffic introduced into the sensor organization. The proposed framework achieves higher accuracy and revelation rate over an extensive variety of assaults, while simultaneously limiting energy utilization.

V. CONCLUSION

In this paper, it is expected to prepare an outline of the interruption location framework in remote sensor organizations. We have primarily discussed WSN-specific security concerns and objectives. As a result of the asset limitation qualities of WSNs from wired frameworks, the Interruption Discovery Framework in WSN needs different methodologies, and these methodologies are portrayed as definite. Inconsistencies of WSNs are depicted, and the identification method of oddity, abuse (signature-based), and determination rule has been brought up for a couple of late years.

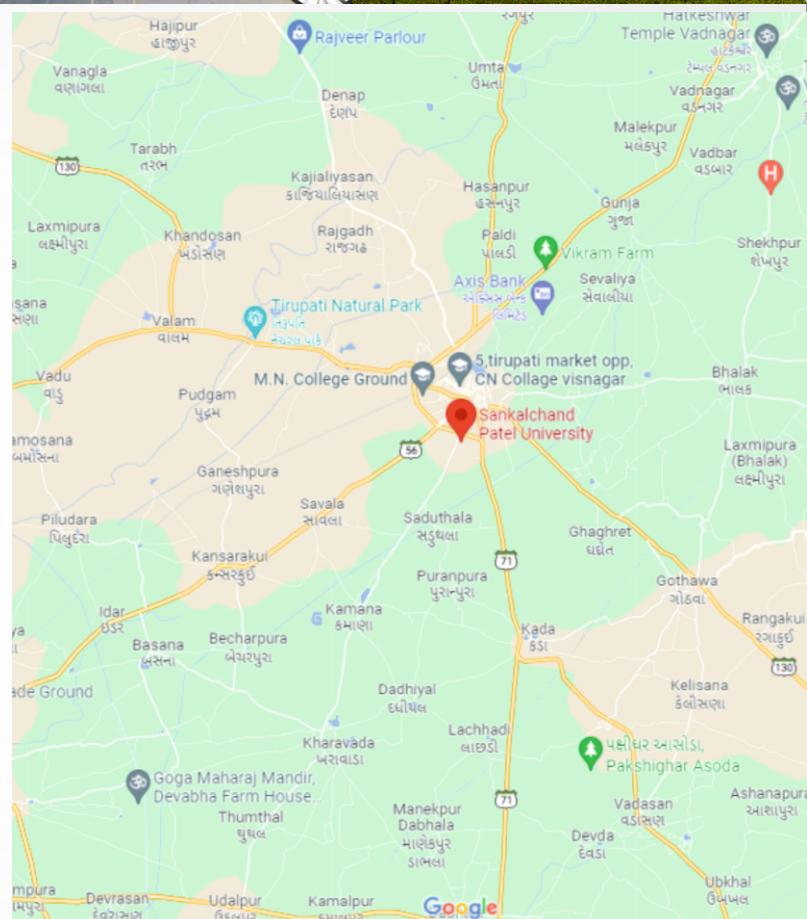
REFERENCES

- [1] Chiwariro, R., N. Thangadurai., “*Quality of service aware routing protocols in wireless multimedia sensor networks: a survey*” InternationalJournal of Information Technology (Singapore), 2022, 14(2), pp. 789–800
- [2] S. M. Metev and V. P. Veiko, “*Laser-Assisted Microtechnology*”, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
- [2] J. Breckling, Ed., “*The Analysis of Directional Time Series: Applications to Wind Speed and Direction*”, ser. Lecture Notes in Statistics. Berlin,Germany: Springer, 1989, vol. 61.
- [3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “*A novel ultrathin elevated channel low-temperature poly-Si TFT*,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
- [4] M. Wegmuller, J. P. vonder Weid, P. Oberson, and N. Gisin, “*High-resolution fiber distributed measurements with coherent OFDR*,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.
- [5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “*High-speed digital-to-RF converter*,” U.S. Patent 5 668 842, Sept. 16, 1997.
- [6] (2002) The IEEE website. [Online]. Available: <http://www.ieee.org/>
- [7] M. Shell. (2002) IEEE tran homepage on CTAN. [Online]. Available: <http://www.ctan.org/tex-archive/macros/latex/contrib./supported/> IEEE transaction.
- [8] FLEX Chip Signal Processor (MC68175/D), Motorola, 1996.
- [9] “*PDCA12-70 data sheet*,” Opto Speed SA, Mezzovico, Switzerland.
- [10] A. Karnik, “*Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP*,” M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
- [11] J. Padhye, V. Firoiu, and D. Towsley, “*A stochastic model of TCP Reno congestion avoidance and control*,” Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
- [12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 199

SPU-JSTMR COMMITTEE

Coordinator :

Dr. Rajesh P. Patel, Associate Professor, Department of Computer Engineering, Sankalchand Patel College of Engineering, Sankalchand Patel University


Committee Members:

Sr. No.	Faculty Name	Designation	Institute Name	Email Id
1	Dr. Hiteshkumar H. Mehta	Associate Professor	Smt. S.S. Patel Nootan Science and Commerce College, SPU	hhmehta.fsh@spu.ac.in
2	Dr. Pradeep Kumar Mishra	Associate Professor	Smt. S. B. Patel Institute of Business Management, SPU	pkmishra.fms@spu.ac.in
3	Dr. Bibhabasu Mohanty	Assistant Professor	Sankalchand Patel College of Engineering, SPU	bibhabasu.env@spcevng.ac.in
4	Prof. Rakesh H. Patel	Assistant Professor	Sankalchand Patel College of Engineering, SPU	rhpatel.mech@spcevng.ac.in
5	Prof. Jitendrakumar H. Darji	Assistant Professor	Sankalchand Patel College of Engineering, MCA Dept., SPU	jhdarji.mca@spcevng.ac.in
6	Prof. Chaitali M. Patel	Assistant Professor	Shri. C.J. Patel College of Computer Studies, SPU	cmpatel.fcs@spu.ac.in
7	Dr. Vikaskumar J. Bhavsar	Assistant Professor	Sankalchand Patel College of Engineering, SPU	vjbhavsar.hm@spcevng.ac.in
8	Prof. Chhaya P. Patel	Assistant Professor	Sankalchand Patel College of Engineering, MBA Dept., SPU	cppatel.mba@spcevng.ac.in
9	Prof. Pankaj C. Patel	Lecturer	Swami Sachchidanand Polytechnic College, SPU	pcpatel.sspc@spu.ac.in
10	Dr. Harshadkumar P. Patel	Lecturer	Swami Sachchidanand Polytechnic College, SPU	hppatel.sspc@spu.ac.in

Sankalchand Patel Vidyadham,
Ambaji - Gandhinagar Highway
Visnagar 384315, India

Managing Editor, SPU Journals
Visnagar 384315, India
Mobile : +91 - 97128 23247
Email : communications.spujstmr@spu.ac.in
Website : <https://spujstmr.in/>

www.spu.ac.in.