

Precision Agriculture Reimagined: A Review on the Role of Semiconductors and AI in Smart Farming 2.0

Jigar A. Soni¹, Himanshu Amritlal Patel², Rajan B. Patel³

Assistant Professor, Dept. of ICT, Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar, India¹

Associate Professor, Dept. of ICT, Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar, India²

Assistant Professor, Dept. of B.Sc. IT, Sankalchand Patel College of Engineering, Sankalchand Patel University, Visnagar, India³

jasoniict_spce@spu.ac.in¹, hapict_spce@spu.ac.in², rbpbscit_spce@spu.ac.in³

Abstract: Smart Farming 2.0 is an evolution of traditional precision farming that utilizes both semiconductor technologies and artificial intelligence (AI) for increased productivity, sustainability, and efficiency in farming practices. This review provides a thorough overview of the latest developments in both semiconductors and AI uses within today's agriculture. It will thoroughly cover the use of sensors, embedded devices, and edge devices along with AI models such as machine learning and deep learning in decision-making on the farm. An extensive review of the literature is included to help frame existing work within possible combinations of systems and future options, providing the knowledge needed for researchers, practitioners, and policymakers who are rethinking agriculture through intelligent farming.

Keywords: Smart Farming 2.0, Precision Agriculture, Semiconductors in Agriculture, Artificial Intelligence, Edge Computing, IoT in Farming, Agricultural Sensors, Machine Learning, Agricultural Robotics, Decision Support Systems

I. INTRODUCTION

The evolution of agriculture from traditional farming to data-driven, precision farming represents a major technology migration. Precision agriculture focuses on field-level management of crop production and livestock and incorporates new methods of optimizing the use of agricultural inputs. With smart devices and allied semiconductor technology coupled with AI tools, precision agriculture has now merged into Smart Farming 2.0, which allows farmers to get real-time data, monitor use of resources, and even automate certain activities to enhance yield and sustainability. This paper aims to systematically review the key technologies driving this migration to smart farming, examine examples of state-of-the-art applications that utilize these technologies, and outline future possibilities for advanced technologies in agriculture. According to the Food and Agriculture Organization (FAO), approximately 70% increase in food production globally will be necessary to feed a growing world population by 2050[1]. Conventional farming methods are characteristically resource-intensive, using significant quantities of water, fertilizer, and human labour. Yet, as a result of semiconductor-based AI advancements, efforts to reduce these inherent inefficiencies are underway, allowing for the implementation of precision farming, automation, and data to inform decision making[2].

Sensors based on semiconductors play a critical role in modern agriculture by providing data on crop status, soil conditions, and climatic conditions. With the use of AI algorithms, sensors support predictive analytics and improve the efficacy of agricultural inputs to address sustainability concerns and improve yields[3]. The work of IoT devices has enabled real-time monitoring of farming activities and management remotely. This advancement was made possible by advances in semiconductor technology[4]. Besides precision farming, autonomous equipment is also transforming the agriculture industry. Advanced semiconductor processors are being integrated into AI-powered robots and drones to perform tasks such as planting, weeding, and harvesting[5]. The technologies not only save labor costs but also enhance operational efficiency and accuracy. In addition, edge AI computing is facilitating quick decision-making by processing

data for agriculture locally as opposed to the use of cloud-based processing, minimizing latency and improving data protection[6]. This paper considers recent progress, challenges, and market forces connected with AI-backed semiconductor innovation in agriculture. Examining the place of semiconductor innovations in meeting most important agricultural concerns, we want to provide perception into their power to increase sustainability and productivity for contemporary agriculture.

II. TRENDS IN SEMICONDUCTOR INNOVATIONS FOR AGRICULTURAL AI

2.1 Role of Semiconductors in Precision Agriculture

Semiconductors at the core of smart farming tools enable sensors, microcontrollers and connectivity systems.

- Sensing: Semiconductor chips are used in soil moisture, temperature, and nutrient sensors for accuracy and portability.
- Connectivity: IoT devices use semiconductor-based wireless modules (such as LoRa and ZigBee) to send data.
- Processing: Edge computing powered by microprocessors reduces the latency of data analysis.
- Low-power semiconductors for energy-efficient devices, which are particularly useful in remote farming locale[7].

2.2 AI's function in precision farming

AI drives automation and optimization by converting unprocessed data into actionable insights[4]:

- Machine Learning (ML): Random Forests and Neural Networks are two examples of algorithms that forecast agricultural yields and identify illnesses[8].
- Computer Vision: Using drones or cameras, AI-powered imaging detects weeds, pests, and crop health.
- Decision Support Systems (DSS): AI combines market, weather, and soil data to manage farms in real time[9].

2.3 Sensor Technologies and IoT Integration

Sensors that are based on semiconductors (for example, soil moisture, nutrient and infrared sensors) enable real-time information collecting for precision farming. Internet of Things (IoT) systems utilize sensors to control irrigation systems, manage animal health and welfare, and fix environmental conditions in a greenhouse. One example of an IoT sensor is a solar-powered sensor that decreases water consumption by 70 percent in a smart greenhouse. In summary, here is an organized review table that illustrates the key topics of sensor technologies and IoT integration from the search results, along with links to the relevant papers[6]:

TABLE I:
REVIEW ON SENSOR TECHNOLOGIES AND IOT INTEGRATION

Paper Title	Sensor Technology Focus	IoT Integration Application	Key Contributions
A Review on Emerging Applications of IoT and Sensor Technology for Industry 4.0 [10].	IoT sensors, edge computing, 5G	Industry 4.0, smart warehouses, inventory management	Discusses advancements in IoT-enabled Industry 4.0, challenges (security, privacy), and trends like edge computing and 5G networks. Highlights smart warehouse architectures and railway IoT systems.
IoT Sensing Applications Using RFID and WSN [11]	RFID sensors, wearable devices	Wearable tech, supply chain management	Analyzes analog/digital RFID sensing, energy harvesting challenges, and anti-collision protocols. Explores hybrid RFID-WSN integration for long-range monitoring.
Challenges, Applications, and Future of Wireless Sensors in IoT[12].	Wireless sensor networks (WSNs)	Environmental monitoring, industrial automation	Reviews security challenges (e.g., eavesdropping, jamming) and proposes machine learning solutions for IoT-integrated WSNs. Explores scalability and energy efficiency in industrial IoT.
Internet of Things:	Multi-layer IoT	Smart cities,	Proposes a generic IoT architecture, discusses

Architectures, Challenges, and Applications[13]	architectures	transportation, energy	market opportunities, and highlights challenges in scalability and data management. Covers applications in traffic monitoring and healthcare.
Smart Sensors: Analysis of Different Types of IoT Sensors[14]	RFID, pressure, temperature, motion sensors	Healthcare, agriculture, smart cities	Classifies IoT sensor types and their applications. Emphasizes RFID integration for real-time data collection and challenges in sensor interoperability.
Security Challenges in Wireless Sensor Networks for IoT[15]	WSNs, intrusion detection systems	Critical infrastructure, healthcare	Identifies security vulnerabilities (e.g., spoofing, node replication) and proposes blockchain and machine learning-based mitigation strategies.

2.4. AI-Driven Analytics and Edge Computing

AI algorithms process sensor data to predict crop yields, detect pests, and simulate climate scenarios. Edge AI reduces latency by processing data locally on farms, enhancing decision-making speed. Innovations like MEMS (Micro-Electro-Mechanical Systems) enable low-cost, scalable soil monitoring solutions[16].

TABLE II:
REVIEW ON AI-DRIVEN ANALYTICS AND EDGE COMPUTING

Paper Title	Technology Focus	Application	Key Contributions
AI-based Fog and Edge Computing: A Systematic Review, Taxonomy and Future Directions[17]	AI in 'Fog' and 'Edge' Computing	Smart cities, healthcare, IoT	Systematic review, taxonomy of AI models, future research directions.
AI Augmented Edge and Fog Computing: Trends and Challenges[18]	Federated Learning, Edge AI Optimization	Industrial automation, real-time decision-making	Discusses AI-driven optimizations, federated learning, emerging challenges.
Edge Intelligence: Paving the Last Mile of AI with Edge Computing[19]	Edge Intelligence	IoT, Smart Healthcare, Intelligent Transportation	Defines "Edge Intelligence," classifies approaches, and explores future research gaps.
Edge Intelligence: The Confluence of Edge Computing and AI[20]	AI-Edge Integration, Reinforcement Learning	Robotics, Autonomous Vehicles	Surveys AI techniques for edge computing, focusing on reinforcement learning and deep learning.
AI on the Edge: A Comprehensive Review[21]	AI Deployment on Edge Devices	Real-time AI Applications, AI Hardware	Discusses AI model deployment strategies, hardware constraints, and real-world applications.

2.5 Generative AI for Predictive Modeling

By augmenting productivity, optimization of resources, and better decision-making, machine learning (ML), deep learning (DL), artificial intelligence (AI), and conversational AI models such as ChatGPT are revolutionizing the agricultural sector. Some key issues such as surveillance agriculture, pest monitoring, weather forecast, and evaluation of soil are being resolved using these technologies. DL-based image processing aids in real-time monitoring of crop and animals in precision agriculture while AI-based prediction models optimize the planting calendar and prevent outbreaks of diseases. ChatGPT and other AI conversational systems offer real-time advisory services that simplify processes such as market research and supply chain management. Future innovation is likely to involve the infusion of AI with IoT, the use of edge computing to make decisions locally, and the use of blockchain for supply chain transparency[22].

TABLE III:
REVIEW ON GENERATIVE AI FOR PREDICTIVE MODELING

Paper Title	Technology Focus	Application	Key Contributions
Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues[23]	Machine Learning (ML), Deep Learning (DL)	Crop yield prediction, soil quality analysis	Offers a detailed summary of ML and DL applications in agriculture, highlights research gaps, and proposes future research directions for enhanced agricultural outcomes.
Generative Adversarial Networks for Image Augmentation in Agriculture: A Systematic Review[24]	Generative Adversarial Networks (GANs)	Crop disease detection, remote sensing	Examines the role of GANs in enhancing agricultural datasets, improving the precision of predictive models for disease detection and remote monitoring.
Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey[25]	AI, Generative AI, Predictive Analytics	Smart farming, precision agriculture	Explores AI's impact on improving food production efficiency, minimizing waste, and promoting sustainable practices in agrifood systems.
A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models[26]	AI-based Crop Simulation, ML Models	Crop yield forecasting, climate impact analysis	Integrates AI techniques with conventional crop simulation models to achieve more accurate yield forecasts under varying climatic conditions.
Generative AI in Smart Agriculture: Opportunities and Challenges[27]	Generative AI, Neural Networks	Automated pest detection, soil moisture monitoring	Discusses how generative AI improves data augmentation and predictive modeling for pest control and soil monitoring, while addressing implementation challenges.
Artificial Intelligence in Agriculture: A Review[28]	AI, ML, DL, IoT Integration	Smart irrigation, automated monitoring	Provides an in-depth review of AI-driven solutions in agriculture, emphasizing automation, real-time monitoring, and IoT integration for optimized farming practices.

2.6 Review on Robotics and Autonomous Systems in AI and Semiconductor Technologies

AI-powered robotics and autonomous systems heavily rely on semiconductor components for real-time data processing, navigation, and decision-making. For example, agricultural robots equipped with AI have demonstrated an 80% reduction in pesticide usage while mitigating labor shortages[29]. Below is a summary of key research papers in this domain:

TABLE IV:

REVIEW ON ROBOTICS AND AUTONOMOUS SYSTEMS IN AI AND SEMICONDUCTOR TECHNOLOGIES

Paper Title	Technology Focus	Application	Key Contributions
Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities[30]	Security in AI-Robotics Systems	Service Robots, Autonomous Vehicles	Analyzes potential vulnerabilities in AI-robotics systems and offers protective measures. Addresses ethical and legal issues, such as accountability and psychological effects. Examines security in Human-Robot Interaction (HRI), emphasizing privacy, data integrity, safety, trust, and transparency, while suggesting future research paths for improved security.
Artificial Intelligence for Long-Term Robot	AI Techniques	Service Robotics, Field Robotics	Explores AI strategies that allow robots to function independently over long durations in

Autonomy: A Survey[31]	for Long-Term Autonomy		dynamic settings. Covers navigation, mapping, perception, knowledge structuring, reasoning, planning, interaction, and learning. Highlights the integration of these approaches for prolonged autonomy and identifies upcoming challenges and opportunities in AI-driven robotics.
Deep Learning in Robotics: A Review of Recent Research[32]	Deep Learning Applications in Robotics	Various Robotic Systems	Investigates the application of deep learning in physical robotic systems. Evaluates the strengths and weaknesses of deep learning through recent studies. Seeks to share cutting-edge developments with the robotics field and encourage further adoption of deep learning in robotic technologies.
A Comprehensive Review on Autonomous Navigation[33]	Autonomous Navigation Systems	Mobile Robots, Autonomous Vehicles	Provides a detailed examination of autonomous mobile robots, encompassing sensor varieties, platforms, simulation tools, path-planning techniques, sensor fusion, obstacle avoidance, and simultaneous localization and mapping (SLAM). Stresses the role of deep learning in autonomous navigation and discusses future research possibilities and hurdles.
Artificial Intelligence for Robotics and Autonomous Systems Applications[34]	AI Integration in Robotics	Unmanned Vehicles, Cooperative Robots, Remote Sensing	Focuses on AI applications in robotics, particularly in processing visual and motion data. Examines the impact of machine learning, including deep learning and reinforcement learning, on robotic performance. Highlights practical uses in remote sensing and introduces emerging concepts like tiny-ML in robotics.
A Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots[35]	Decision-Making and Control Architectures	Social Robots, Autonomous Assistive Devices	Reviews the evolution of decision-making and control architectures for autonomous and social robots over three decades. Identifies trends in combining biologically inspired designs with machine learning. Explores software architecture challenges for action selection and proposes directions to advance capabilities of autonomous and social robots.

III. CHALLENGES AND OPPORTUNITIES IN AGRICULTURAL AI

3.1 Technical Challenges

Technical integration of AI in agriculture has several technical challenges:

- **Heterogeneous Data Sources:** Differences in data formats (e.g., satellite imagery, IoT sensors, weather conditions) make it difficult to integrate smoothly[36].
- **Harsh Field Environments:** Robustness of hardware (e.g., drones, sensors) under extreme environmental conditions is still a challenge[37].
- **Real-Time Processing & Power Constraints:** Constrained computation resources at the edge (e.g., on-field devices) prevent low-latency decision-making[38].

3.2 Socioeconomic Challenges

- **Digital Divide:** Rural communities typically do not have infrastructure (connectivity, power) for implementing AI-based solutions[39].
- **High Deployment Costs:** Smart farming technology (e.g., precision agriculture equipment) investment is too high for smallholders at the onset[40].
- **Training Gaps:** Stakeholders and farmers need training to adopt and have faith in data-driven decision support systems (DSS)[41].

3.3 Emerging Opportunities

- **Neuromorphic Computing:** Energy-efficient AI processors might make real-time edge processing feasible in resource-constrained environments[42].
- **Explainable AI (XAI):** Transparent models boost farmer trust in DSS by offering interpretable recommendations[43].
- **Standardized Platforms:** Open frameworks for data and tool interoperability (e.g., FAO's WaPOR) can drive adoption[44]

IV. FUTURE RESEARCH DIRECTIONS

To overcome current shortcomings, the following directions are imperative:

- **Next-Gen Connectivity:** Utilizing 6G networks and quantum computing can allow ultra-high-speed, large-volume agricultural data analytics[45].
- **Bio-Sensors:** Plant/livestock wearable devices can facilitate early disease diagnosis and animal health monitoring[46].
- **Autonomous Crop Management:** AI-based systems for end-to-end automation (planting through harvesting) via robotics and computer vision[47].
- **Blockchain for Transparency:** Secure, decentralized record-keeping to track produce from farm to consumer, ensuring compliance with sustainability[36].

V. CONCLUSION

Semiconductors and artificial intelligence constitute the pillars of Smart Farming 2.0, propelling a future of sustainable and smart agriculture. They empower accurate, timely, and data-driven farm management practices that increase efficiency and productivity. Interdisciplinary studies and investment need to continue to break existing limitations and unlock the full potential of smart farm technologies. By leveraging the capabilities of AI applications powered by semiconductors, the agricultural industry can move toward a more sustainable and robust future, guaranteeing food security for the increasing global population.

REFERENCES

- [1] F. S. Statistics and A. Economics, “*The future of food and agriculture*,” Agrifood Economics and Policy Division (ESA), FAO. [Online]. Available: <https://www.fao.org/global-perspectives-studies/en/>
- [2] V. Ramamurthy, G. P. O. Reddy, and N. Kumar, “*Assessment of land suitability for maize (Zea mays L) in semi-arid ecosystem of southern India using integrated AHP and GIS approach*,” Comput. Electron. Agric., vol. 179, p. 105806, 2020, doi: <https://doi.org/10.1016/j.compag.2020.105806>.
- [3] Y. Faqir, A. Qayoom, E. Erasmus, M. Schutte-Smith, and H. G. Visser, “*A review on the application of advanced soil and plant sensors in the agriculture sector*,” Comput. Electron. Agric., vol. 226, no. December 2023, p. 109385, 2024, doi: [10.1016/j.compag.2024.109385](https://doi.org/10.1016/j.compag.2024.109385).
- [4] P. Rajak, A. Ganguly, S. Adhikary, and S. Bhattacharya, “*Internet of Things and smart sensors in agriculture: Scopes and challenges*,” J. Agric. Food Res., vol. 14, no. June, p. 100776, 2023, doi: [10.1016/j.jafr.2023.100776](https://doi.org/10.1016/j.jafr.2023.100776).
- [5] A. J. Moshayedi, A. Sohail Khan, Y. Yang, J. Hu, and A. Kolahdooz, “*Robots in Agriculture: Revolutionizing Farming Practices*,” EAI Endorsed Trans. AI Robot., vol. 3, 2024, doi: [10.4108/airo.5855](https://doi.org/10.4108/airo.5855).
- [6] J. A. Soni, H. A. Patel, and R. B. Patel, “*Semiconductor Innovations For AI-Driven Agricultural Sustainability : A Review Of Trends , Challenges , And Market Dynamics*,” Int. J. Creat., vol. 13, no. 1, pp. h639–h648, 2025, [Online]. Available: <https://ijcrt.org/papers/IJCRT2501881.pdf>
- [7] A. P. Selvam, “*The Impact of IoT and Sensor Integration on Real- Time Weather Monitoring Systems : A*

Systematic Review,” pp. 1–71, 2023.

- [8] L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, “*Machine Learning in Agriculture: A Comprehensive Updated Review*,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113758.
- [9] K. Sharma and S. K. Shivandu, “*Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture*,” Sensors Int., vol. 5, no. August, p. 100292, 2024, doi: 10.1016/j.sintl.2024.100292.
- [10] K. Bhatt, C. Agrawal, and A. M. Bisen, “*A Review on Emerging Applications of IoT and Sensor Technology for Industry 4.0*,” Wirel. Pers. Commun., vol. 134, no. 4, pp. 2371–2389, 2024, doi: 10.1007/s11277-024-11054-x.
- [11] H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, “*A review of iot sensing applications and challenges using RFID and wireless sensor networks*,” Sensors (Switzerland), vol. 20, no. 9, pp. 1–18, 2020, doi: 10.3390/s20092495.
- [12] M. A. Jamshed, K. Ali, Q. H. Abbasi, M. A. Imran, and M. Ur-Rehman, “*Challenges, Applications, and Future of Wireless Sensors in Internet of Things: A Review*,” IEEE Sens. J., vol. 22, no. 6, pp. 5482–5494, 2022, doi: 10.1109/JSEN.2022.3148128.
- [13] A. Choudhary, *Internet of Things: a comprehensive overview, architectures, applications, simulation tools, challenges and future directions*, vol. 4, no. 1. Springer International Publishing, 2024. doi: 10.1007/s43926-024-00084-3.
- [14] D. Sehrawat and N. S. Gill, “*Smart Sensors: Analysis of Different Types of IoT Sensors*,” in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 523–528. doi: 10.1109/ICOEI.2019.8862778.
- [15] L. Prusty, P. K. Swain, S. Satpathy, and S. Mahapatra, “*Comprehensive Review of Security Challenges and Issues in Wireless Sensor Networks Integrated with IoT*,” in Explainable IoT Applications: A Demystification, S. N. Mohanty, S. Satpathy, X. Cheng, and S. K. Pani, Eds., Cham: Springer Nature Switzerland, 2025, pp. 467–485. doi: 10.1007/978-3-031-74885-1_30.
- [16] H. Digital, “*Artificial intelligence innovations in precision farming : Enhancing climate- resilient crop management Artificial intelligence innovations in precision farming : Enhancing climate-resilient crop management*,” no. November, 2024.
- [17] S. Iftikhar et al., “*AI-based fog and edge computing: A systematic review, taxonomy and future directions*,” Internet of Things (Netherlands), vol. 21, pp. 0–2, 2023, doi: 10.1016/j.iot.2022.100674.
- [18] S. Tuli et al., “*AI augmented Edge and Fog computing: Trends and challenges*,” J. Netw. Comput. Appl., vol. 216, 2023, doi: 10.1016/j.jnca.2023.103648.
- [19] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “*Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing*,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, 2019, doi: 10.1109/JPROC.2019.2918951.
- [20] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “*Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence*,” IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469, 2020, doi: 10.1109/JIOT.2020.2984887.
- [21] W. Su, L. Li, F. Liu, M. He, and X. Liang, “*AI on the edge: a comprehensive review*,” Artif. Intell. Rev., vol. 55, no. 8, pp. 6125–6183, 2022, doi: 10.1007/s10462-022-10141-4.
- [22] S. Chaudhary, A. Jagarlapudi, and M. S. Raval, “*Proceedings of National Conference on ‘GeneRative AI for Nurturing National Conference on ‘GeneRative AI for Nurturing Sustainable Agriculture Jointly organised by Indian Society of Agricultural Information Technology (INSAIT) and Edited By J. Adinar*,” no. January, 2025, doi: 10.13140/RG.2.2.36079.34725.
- [23] Aashu, K. Rajwar, M. Pant, and K. Deep, “*Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues*,” 2024, [Online]. Available: <http://arxiv.org/abs/2405.17465>

- [24] Y. Lu, D. Chen, E. Olaniyi, and Y. Huang, “*Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review*,” *Comput. Electron. Agric.*, vol. 200, 2022, doi: 10.1016/j.compag.2022.107208.
- [25] T. Chen et al., “*Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey*,” pp. 1–40, 2023, [Online]. Available: <http://arxiv.org/abs/2305.01899>
- [26] R. L. de F. Cunha, B. Silva, and P. B. Avegliano, “*A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models*,” pp. 1–41, 2023, [Online]. Available: <http://arxiv.org/abs/2306.10121>
- [27] A. G.S, “*Generative AI in Smart Agriculture: Opportunities and Challenges*,” *Int. J. Innov. Sci. Res. Technol.*, pp. 90–92, 2024, doi: 10.38124/ijisrt/IJISRT24NOV232.
- [28] R. Sharma, “*Artificial Intelligence in Agriculture: A Review*,” 2021, pp. 937–942. doi:10.1109/ICICCS51141.2021.9432187.
- [29] G. Nagaraja, H. Shoba, S. Ms, and K. Pn, “*The impact of robotics and drones on agricultural efficiency and productivity*,” vol. 7, no. 9, pp. 1001–1009, 2024.
- [30] S. Neupane et al., “*Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities*,” *IEEE Access*, vol. 12, no. Ml, pp. 22072–22097, 2024, doi: 10.1109/ACCESS.2024.3363657.
- [31] L. Kunze, N. Hawes, T. Duckett, M. Hanheide, and T. Krajnik, “*Artificial Intelligence for Long-Term Robot Autonomy: A Survey*,” *IEEE Robot. Autom. Lett.*, vol. 3, no. 4, pp. 4023–4030, 2018, doi:10.1109/LRA.2018.2860628.
- [32] H. A. Pierson and M. S. Gashler, “*Deep learning in robotics: a review of recent research*,” *Adv. Robot.*, vol. 31, no. 16, pp. 821–835, 2017, doi: 10.1080/01691864.2017.1365009.
- [33] S. Nahavandi et al., “*A Comprehensive Review on Autonomous Navigation*,” vol. 1, no. 1, 2022, [Online]. Available: <http://arxiv.org/abs/2212.12808>
- [34] A. T. Azar and A. Koubâa, Artificial intelligence for robotics and autonomous systems applications, 1st ed., vol. 1093. Springer Cham, 2023. [Online]. Available: <https://link.springer.com/10.1007/978-3-031-28715-2>
- [35] M. Maroto-Gómez, F. Alonso-Martín, M. Malfaz, Á. Castro-González, J. C. Castillo, and M. Á. Salichs, A Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots, vol. 15, no. 5. Springer Netherlands, 2023. doi: 10.1007/s12369-023-00977-3.
- [36] A. Panwar, M. Khari, S. Misra, and U. Sugandh, “*Blockchain in Agriculture to Ensure Trust, Effectiveness, and Traceability from Farm Fields to Groceries*,” *Futur. Internet*, vol. 15, no. 12, pp. 1–28, 2023, doi: 10.3390/fi15120404.
- [37] L. Wang, M. Xiao, X. Guo, Y. Yang, Z. Zhang, and C. Lee, “*Sensing Technologies for Outdoor/Indoor Farming*,” *Biosensors*, vol. 14, no. 12, 2024, doi: 10.3390/bios14120629.
- [38] F. Assimakopoulos, C. Vassilakis, D. Margaris, K. Kotis, and D. Spiliopoulos, “*AI and Related Technologies in the Fields of Smart Agriculture: A Review*,” 2025. doi: 10.3390/info16020100.
- [39] S. Samadder, S. P. Pandya, and S. P. Lal, “*Bridging the Digital Divide in Agriculture: An Investigation to ICT Adoption for Sustainable Farming Practices in Banaskantha District of Gujarat, India*,” *Int. J. Environ. Clim. Chang.*, vol. 13, no. 9, pp. 1376–1384, 2023, doi: 10.9734/ijecc/2023/v13i92367.
- [40] T. Mizik, “*How can precision farming work on a small scale? A systematic literature review*,” *Precis. Agric.*, vol. 24, no. 1, pp. 384–406, 2023, doi: 10.1007/s11119-022-09934-y.
- [41] M. McCaig, R. Dara, and D. Rezania, “*Farmer-centric design thinking principles for smart farming technologies*,” *Internet of Things*, vol. 23, p. 100898, 2023, doi: <https://doi.org/10.1016/j.iot.2023.100898>.
- [42] R. Suvra Das, “*Emerging Neuromorphic Computing for Edge AI Application: A Systematic Literature Review*,” *J. Technol. Innov. Etd*, no. July, 2020, [Online]. Available: <http://jtipublishing.com/jti>

- [43] S. A. and S. R., “*A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends*,” *Decis. Anal.* J., vol. 7, p. 100230, 2023, doi: 10.1016/j.dajour.2023.100230.
- [44] S. Veysi, E. Galehban, M. Nouri, S. Mallah, and H. Nouri, “*Comprehensive framework for interpretation of WaPOR water productivity*,” *Heliyon*, vol. 10, no. 16, p. e36350, 2024, doi: <https://doi.org/10.1016/j.heliyon.2024.e36350>.
- [45] S. Polymeni, S. Plastras, D. Skoutas, G. Kormentzas, and C. Skianis, “*The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review*,” *Electronics*, vol. 12, p. 2651, 2023, doi: 10.3390/electronics12122651.
- [46] B. Yan, F. Zhang, M. Wang, Y. Zhang, and S. Fu, “*Flexible wearable sensors for crop monitoring: a review*,” *Front. Plant Sci.*, vol. 15, no. May, pp. 1–17, 2024, doi: 10.3389/fpls.2024.1406074.
- [47] M. S. Memon et al., “*Automatic visual recognition, detection and classification of weeds in cotton fields based on machine vision*,” *Crop Prot.*, vol. 187, p. 106966, 2025, doi: <https://doi.org/10.1016/j.cropro.2024.106966>.