

Scope of Work:

- Analysis and Issue Recognizing standard concrete in its simple form.
- A thorough analysis and evaluation of the literature.
- Select chopped basalt fiber with varying aspect ratios and content from the literature review to add to plain concrete.
- Carry out the required analysis, testing, and inspections.
- Create the mix design for the M25, M35, and M45 grade plain concrete control mix.
- Making cube and cylinder examples of basalt fiber reinforced concrete.
- Seven days of curing test specimens.
- Following curing, the cube and cylinder specimens were exposed to fire temperatures of 300°C, 500°C, and 700°C.
- Using the necessary data collection systems and apparatus to test the specimens.
- Examining the test findings
- Examine the differences between standard concrete and concrete reinforced with basalt fibers.
- Determine optimum Aspect Ratio of chopped basalt fiber which improves the thermal stability and mechanical properties of plain concrete than others.

IV. LITERATURE REVIEW

TABLE: 1
LITERATURE PAPER: 1

Sr. No	Title of Paper	Author	Source & Publication Year
1	Use of basalt fibers for concrete structures	Cory High, Hatem M.Seliem, AdelEl - Safty, SamiH. Rizkalla	Elsevier 2015
Data Related to Paper	<ul style="list-style-type: none"> • In this paper, a comparative study is carried out by them related to the use of basalt fiber bars and chopped basalt fiber in concrete. Use of basalt fiber in concrete focusing fiber length effect. 		
Test conducted	<ul style="list-style-type: none"> • Bond strength Test on bar specimen • Compressive strength and Flexural strength test on chopped basalt fiber specimen 		
Conclusion	<ul style="list-style-type: none"> • Results show that chopped basalt fibers how to increase in compressive strength at 28 days. • Short bond lengths show gradual slip prior to failure and specimens with long bond lengths exhibited sudden failure due to rupture of BFRC bars. 		

TABLE: II
LITERATURE PAPER: 2

Sr. No	Title of Paper	Author	Source & Publication Year
2	Evaluation of heat-resisting behavior of basalt fiber in forced FG tiles	Anuja Narayan and Prabhavathy Shanmugasundaram	Elsevier 2018
Data Related to Paper	<ul style="list-style-type: none"> In this paper, investigations are carried out to predict the heat-resisting behavior of leash-based geo polymer(FG) tile intended for thermal application in buildings. 		
Test conducted	Steady-state temperature, Flame Test, Furnace heat resistance, Opentosky, Heat dissipation, Thermal shock resistance, Compressive strength test		
Conclusion	<ul style="list-style-type: none"> The end of the research conclusion is FG tiles prepared with 0.5% basalt fiber and 0.5% TiO₂ to the mass of flesh give a higher compressive strength of 33.10 MPa with the dry density 1961 Kg/m³. Various temperature drop and times is taken by the specimen to regain its original form Specimen with TiO₂ and Basalt fiber increases temperature drop of 25.38% and 4.78% Compressive strength is higher than normal and additive mixes of about 30.89% and 28.11% because of the higher oxidizing property of TiO₂ and high temperature with the standing ability of basalt fiber. In to sky test higher drop value of 12.72% at 11.00 am. 		

TABLE III:
LITERATURE PAPER: 3

Sr.No	Title of Paper	Author	Source & Publication Year
3	Experimental study on the mechanical and thermal properties of basalt fiber and Nanoclay reinforced Polymer concrete.	M HassaniNiaki, A.Fereidoon, M.Ghorbanzadesh Ahangari	Elsevier 21 February 2018
Data Related to Paper	<ul style="list-style-type: none"> Researchers investigate the effect of chopped basalt fiber on the Compressive, Flexural, and Split tensile strength test as well as the effect of different temperatures (up to 250°C) In a second step, the effect of Nano clay particles under high temperatures on mechanical properties was also studied in the same way and compared. 		
Test conducted	Steady-state temperature, Flame Test, Furnace heat resistance, Open to sky, Heat dissipation, Thermal shock resistance, Compressive strength test		
Conclusion	<ul style="list-style-type: none"> Basalt Fiber caused an improvement of 35% in splitting tensile strength compared to plain concrete. Nanoclay caused a decrease of splitting tensile strength from 15.95 MPa to 11.54 MPa Due to the addition of basalt fiber increased in compressive strength 10%, Flexural strength 4.8%, and split tensile strength up to 35% while due to Nanoclay increased compressive Strength by up to 7% and flexural strength 27%. 		

V. EXPERIMENTAL PROGRAMMED

1. Material:

1.1 Cement:

The whole project employed OPC (53 grade), which verifies IS - 12269:2013 and IS - 456:2000, both of which are readily accessible locally and have a specific gravity of 3.15.

1.2 Aggregate:

It is confirmed that IS – 383:2016 and IS – 2386 were employed throughout the job using locally accessible fine and coarse aggregate. Uses include coarse aggregate with a maximum size of 20 mm and a specific gravity of 2.74, as well as river sand, which verifies Zone II and has a maximum size of 3 mm and a specific gravity of 2.62.

1.3 Admixture:

FOSROCCONPLASTSP430 is available commercially used in making concrete which is brown in color and in liquid form having specific gravity 1.18@ 25 °C.

1.4 Basalt Fibers:

Three different lengths of chopped basalt fiber 6 mm, 12 mm and 18 mm used in this study. The fiber was supplied by GoGreen Products, India. Melting pure basalt rock that occurs naturally is the first step in the one-stage process used to create basalt fibers. Dark brown to black, hard, and volcanic igneous rock in its native state is called basalt. It is the most prevalent kind in the crust of the world. Because of its exceptional strength and durability, basalt is a perfect material for structural and other construction-related applications.

Fig. 1 Basalt fiber

Basalt Fiber Properties:

- **Color:** Golden Brown.
- **Diameter:** 0.24 mm.
- **Length:** 6, 12, 18 mm.
- **Density:** 2.67g/cm³.
- **Coefficient of friction:** 0.42 to 0.50.

- Basalts are stable in strong alkalis.
- Weight loss in boiling water, Alkali, and acid is also considerably lower.
- Basalt fibers have very good resistance against alkaline environments and withstand pH up to 13 to 14.
- It also has good acid and salt resistance.

2.2 Mixing and Curing:

BF (0.75%) was added to the mix after cement was put to the dry mixture that had first been combined with coarse and fine aggregate. Water was lastly added to the mixture gradually. New concrete was individually poured into a 150×150×150 mm cubic mold for compressive strength testing, a 150 ϕ × 300 mm cylindrical mold for split tensile strength testing, and a 500×100×100 mm flexural beam. Specimens were deposited in the tank to cure after casting.

2.3 Elevated Temperature Condition:

Before testing, a specimen was placed to an elevated temperature of 300°C, 500 °C, 700 °C ($\pm 10^\circ\text{C}$). The temperature was controlled by an electrical furnace. After 2h of subjecting to elevated temperature specimens were allowed to cool down to room temperature and then tested.

2.4 Mechanical Test:

All of the mechanical tests were conducted using a compressive strength testing apparatus. Testing for compressive strength was done in accordance with IS-516, while testing for split tensile strength was done in accordance with IS-5816. For the split tensile strength test on a cylinder specimen measuring 150 ϕ × 300 mm, the compression test will be conducted on a cube specimen measuring 150×150×150 mm, and the flexural beam will be tested at 500×100×100 mm. The equipment utilized to assess compressive strength was provided by EIE Instruments Pvt. Ltd. After being made and tested, three distinct mixes, designated Mix-1, Mix-2, and Mix-3, were found to have the following mean values for tensile and compressive strength after 28 days.

TABLE IV:
MEAN STRENGTH AT 28 DAYS

Mix	Mean compressive strength At 28 days (N/mm ²)	Mean Split tensile strength At 28 days (N/mm ²)	Flexural Strength At 28 days (Mpa)
1	28.35	3.63	3.5
2	40.63	4.29	4.14
3	49.41	4.7	4.69

Fig. 2 Compressive Strength test

Fig. 3 Split Tensile Strength test

VI. RESULT AND DISCUSSION

1. Compressive Strength:

- Findings for several mixtures are displayed in Table 1-3, It is evident that adding 0.75% of BF to concrete mixtures boosts their strength. Strengthened concrete with BF added can be increased by 4–20% over plain concrete.
- At a high elevated temperature of 500 °C, In PC, there is a reduction of strength up to 15-18 % but in the case of BF having an Aspect Ratio 25, Strength reduction up to 8%, Aspect Ratio 50, Strength reduction up to 5% and Aspect Ratio 75, Strength reduction upto 5-6%. At 700°C temperature Strength reduction upto 30% in PC, while in the case of BF, strength reduction is limited to 20-22 % due to AR-25, 16 % due to AR-50, and 17-18% strength reduction due to AR-75.
- From the Fig, it can be seen that as the Aspect Ratio of BF increases strength of concrete increases.

TABLE V:
COMPRESSIVE STRENGTH (MIX-1)

MIX-1 Compressive Strength (56Days)				
M-25	0 °C	300 °C	500 °C	700 °C
PCC	29.48	28.09	24.17	20.68
AR25	30.87	30.01	28.4	24.07
AR50	33.6	33.54	31.58	27.55
AR75	34.03	33.8	31.98	28.18

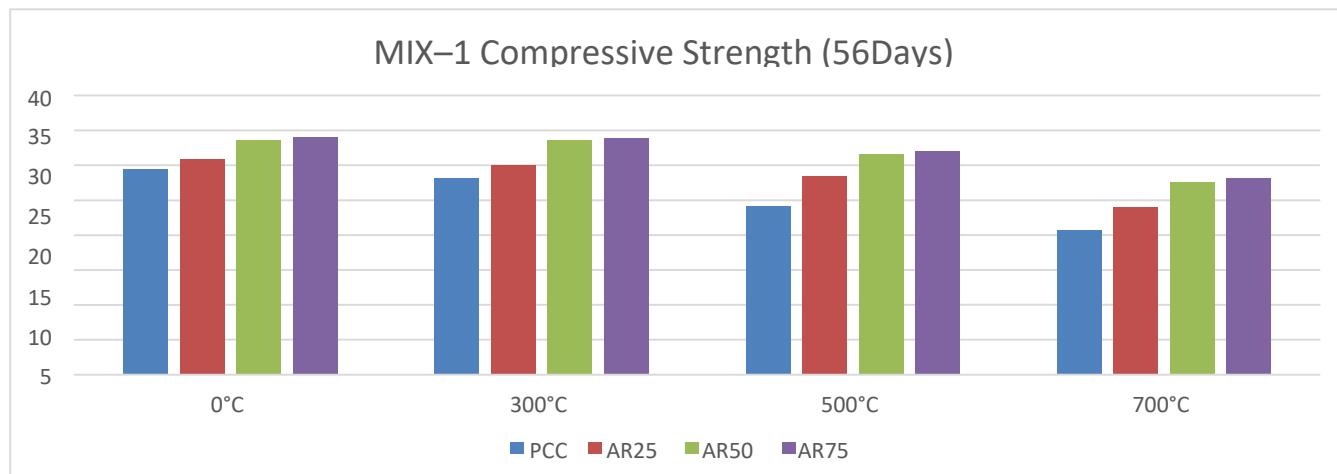


Fig. 4 Compressive Strength (MIX-1)

TABLE VI:
COMPRESSIVE STRENGTH (MIX-2)

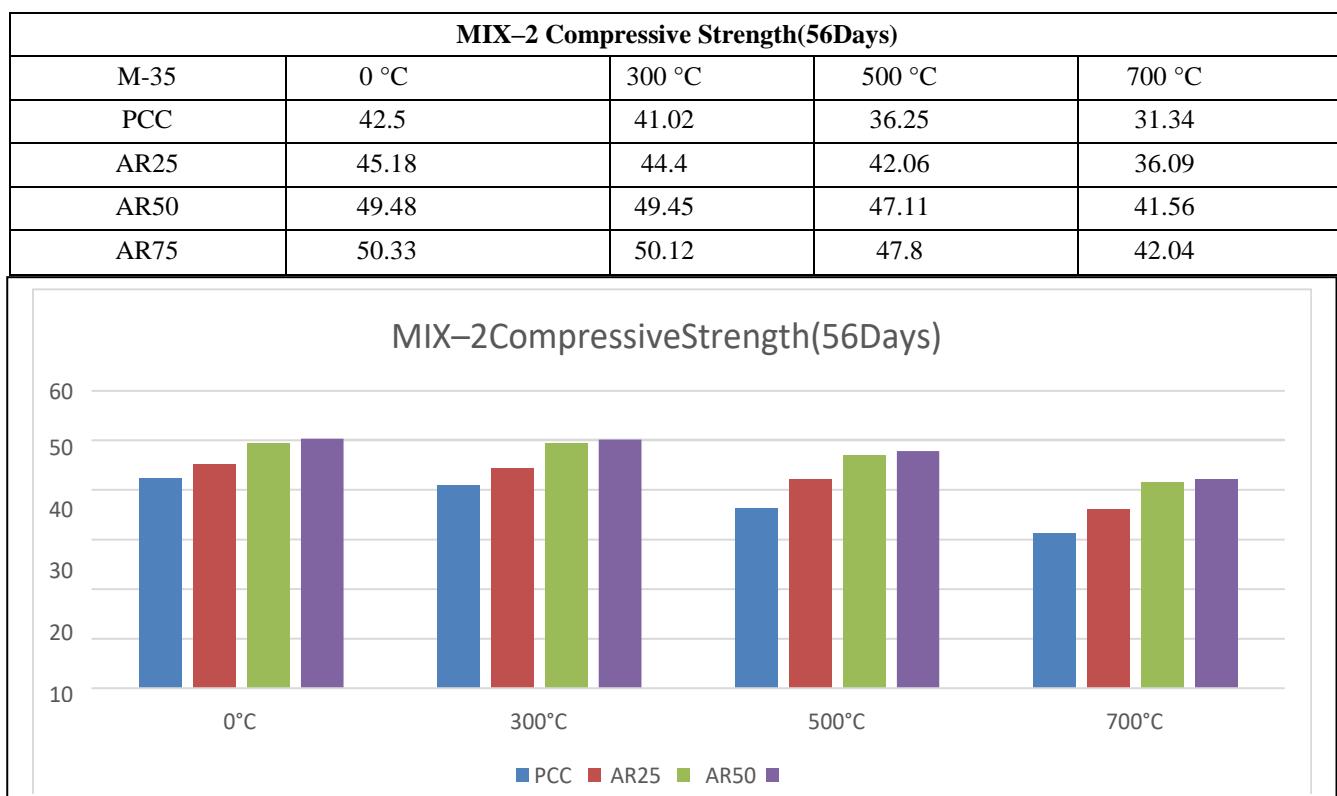


Fig. 5 Compressive Strength (MIX-2)

TABLE: VII
COMPRESSIVE STRENGTH (MIX-3)

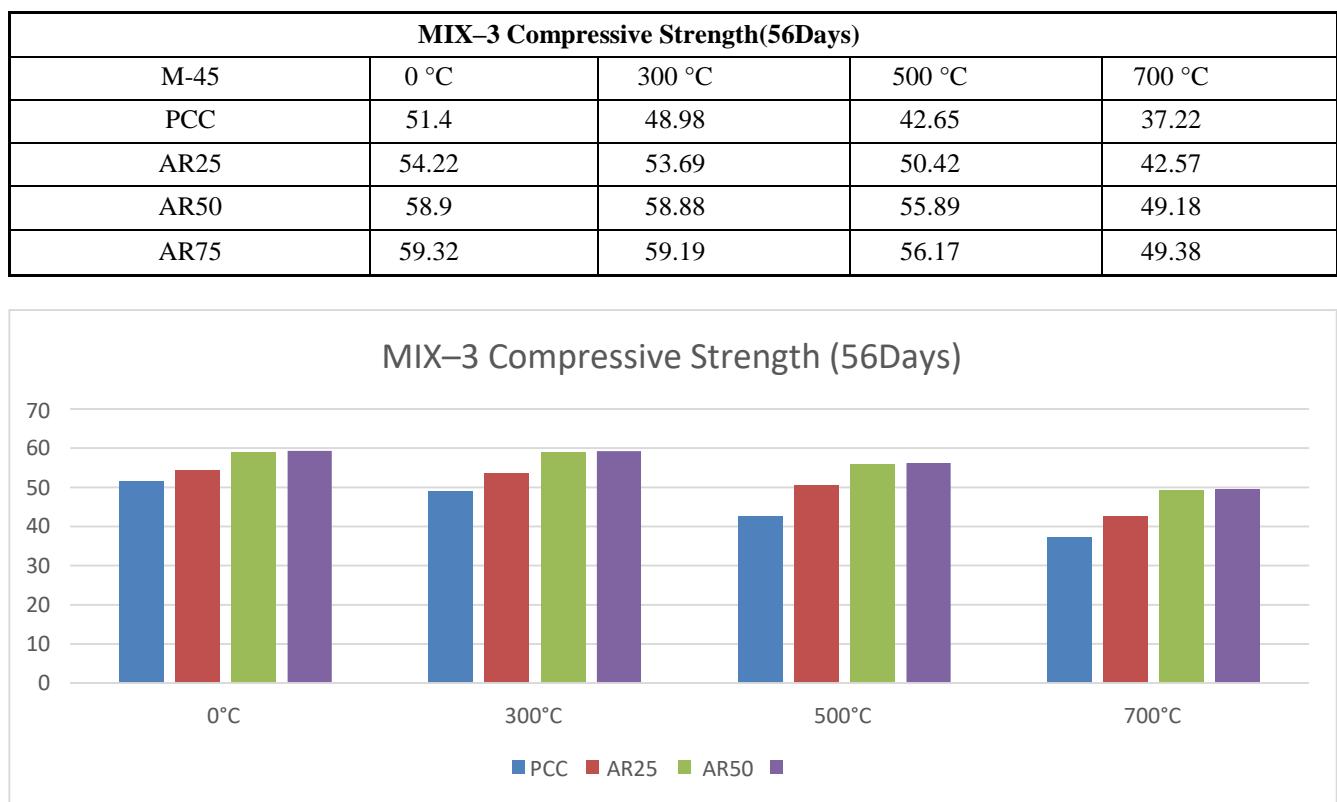


Fig. 6: Compressive Strength (MIX-3)

2. Split tensile strength test:

- Results for the different combinations' tensile strengths are displayed in Table 4-6. As can be observed, adding BF to PC increases split tensile strength by up to 34%.
- At an elevated temperature of 500°C and 700 °C, the Strength of PC was reduced by up to 11 % and 25% correspondingly. While BF having AR-25 cause a reduction in strength up to 10 % (At 500 °C) and 22 % (At 700°C). BF having AR-50 caused a reduction in strength up to 6-7% (At 500°C) and up to 19% (At 700 °C). BF having AR-75 cause a reduction in strength up to 8% (At 500°C) and up to 20 % (At 700°C).
- It can be seen that as the aspect ratio of basalt fiber increases strength of concrete increases.

TABLE VIII:
TENSILE STRENGTH (MIX-1)

MIX-1 Tensile Strength(56 Days)				
M-25	0 °C	300 °C	500 °C	700 °C
PCC	3.8	3.66	3.38	2.85
AR25	4.2	4.05	3.81	3.28
AR50	4.88	4.84	4.5	3.95
AR75	5.05	4.92	4.65	4.04



Fig. 7 Tensile Strength (MIX-1)

TABLE IX:
TENSILE STRENGTH (MIX-2)

MIX-2 Tensile Strength(56 Days)				
M-35	0 °C	300 °C	500 °C	700 °C
PCC	4.42	4.27	3.97	3.35
AR25	4.9	4.76	4.48	3.82
AR50	5.67	5.65	5.33	4.58
AR75	5.97	5.79	5.39	4.75

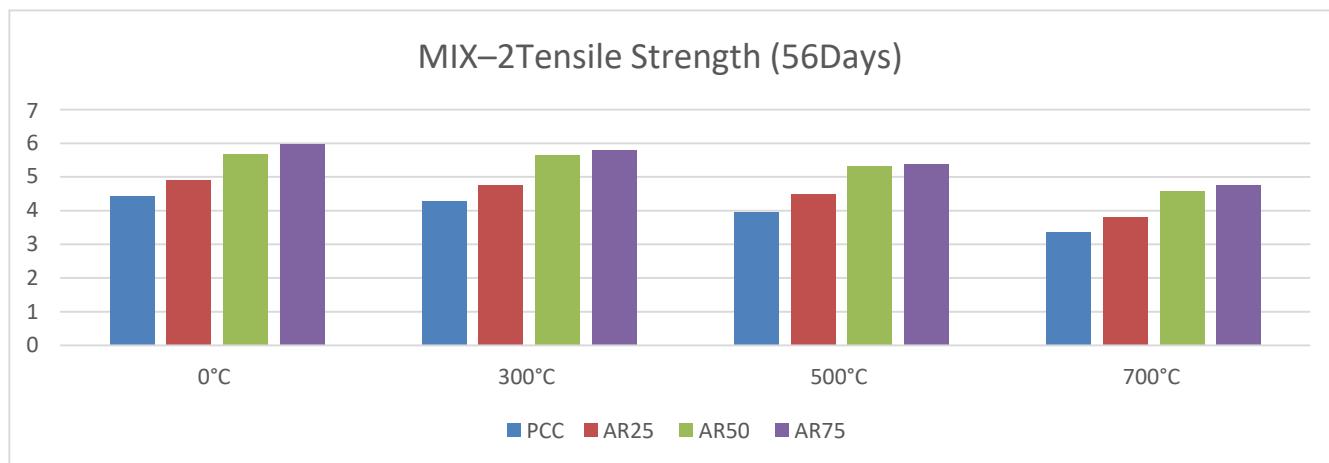


Fig. 8: Tensile Strength (MIX - 2)

TABLE X:
TENSILE STRENGTH (MIX-3)

MIX-3 Tensile Strength(56 Days)				
M-45	0 °C	300 °C	500 °C	700 °C
PCC	4.85	4.67	4.34	3.64
AR25	5.29	5.13	4.81	4.12
AR50	6.21	6.2	5.82	5.03
AR75	6.47	6.38	5.95	5.21

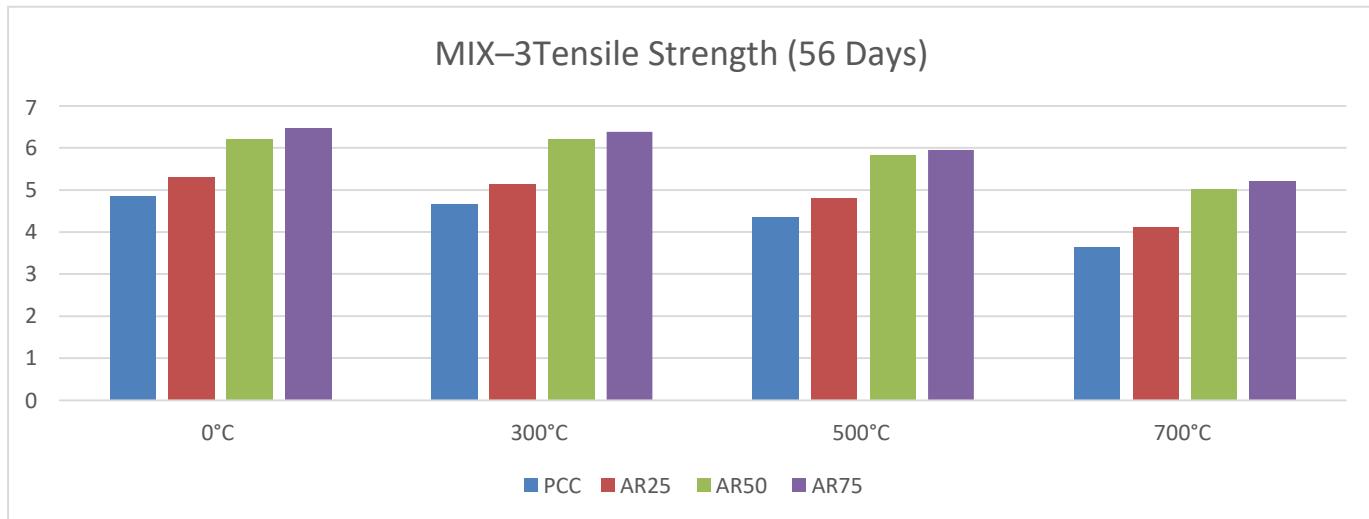


Fig. 9 Tensile Strength (MIX-3)

2. Flexural Strength Test

- Results for the Flexural strength of various mixes are shown in Table 8-10. It can be seen that the addition of BF to PC causes an increase in Flexural strength by up to 31%.
- At elevated temperatures of 500°C and 700°C, the Strength of PC reduced upto 12% and 24% correspondingly. While BF having AR-25 cause a reduction in strength up to 10 % (At 500 °C) and 22 % (At 700 °C). BF having AR-50 causes a reduction in strength up to 5-6 % (At 500 °C) and up to 18 % (At 700 °C). BF having AR-75 cause reduction in strength upto 7% (At 500°C) and up to 20% (At 700 °C).
- It can be seen that as the aspect ratio of basalt fiber increases strength of concrete increases.

TABLE XI:
FLEXURAL STRENGTH (MIX-1)

MIX-1Flexural Strength(56Days)				
M-25	0°C	300°C	500°C	700°C
PCC	3.68	3.54	3.27	2.76
AR25	4.00	3.85	3.56	3.00
AR50	4.56	4.39	4.05	3.42
AR75	4.69	4.52	4.18	3.52

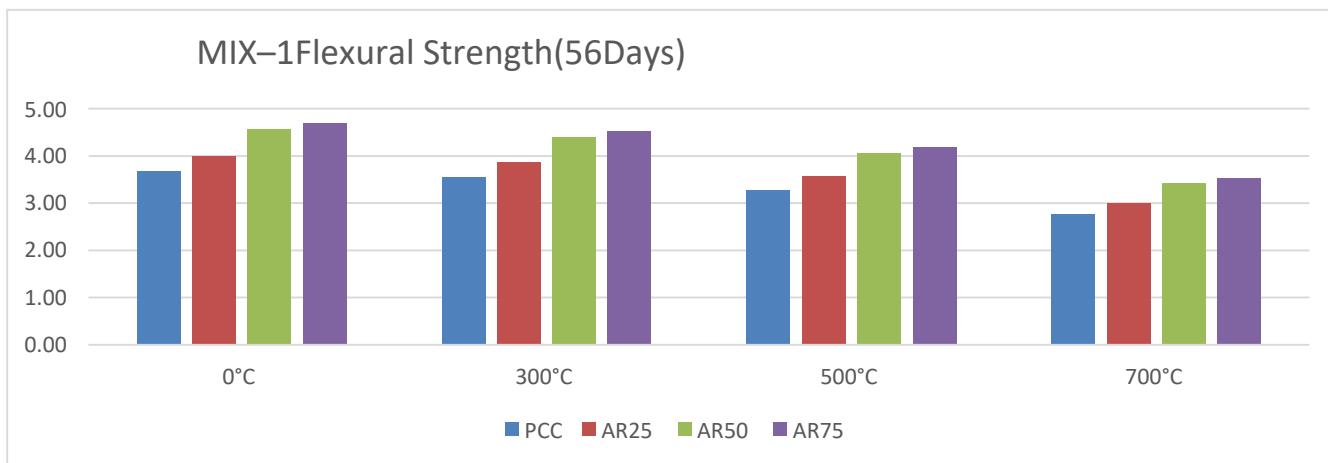


Fig. 10 Flexural Strength (MIX-1)

TABLE XII:
FLEXURAL STRENGTH (MIX-2)

MIX-2Flexural Strength(56Days)				
M-35	0°C	300°C	500°C	700°C
PCC	4.35	4.19	3.87	3.26
AR25	4.70	4.52	4.18	3.52
AR50	5.31	5.12	4.72	3.98
AR75	5.46	5.26	4.85	4.09

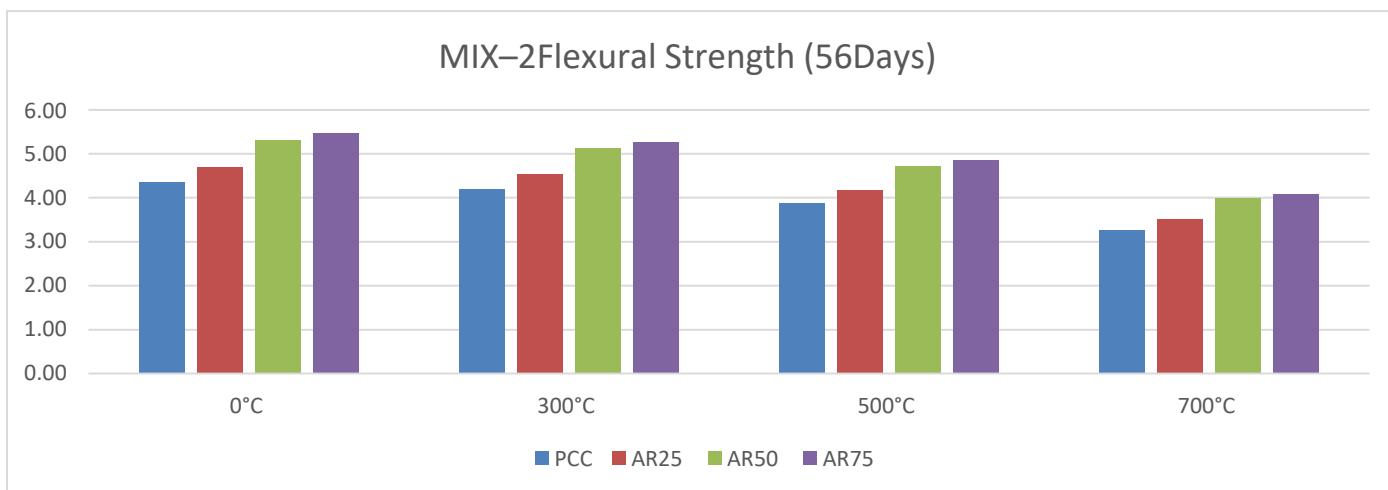


Fig. 11 Flexural Strength (MIX-2)

TABLE: XIII
FLEXURAL STRENGTH (MIX-3)

MIX-3 Flexural Strength(56Days)				
M-45	0°C	300°C	500°C	700°C
PCC	4.92	4.74	4.38	3.69
AR25	5.31	5.12	4.73	3.99
AR50	5.97	5.75	5.31	4.47
AR75	6.13	5.90	5.45	4.60

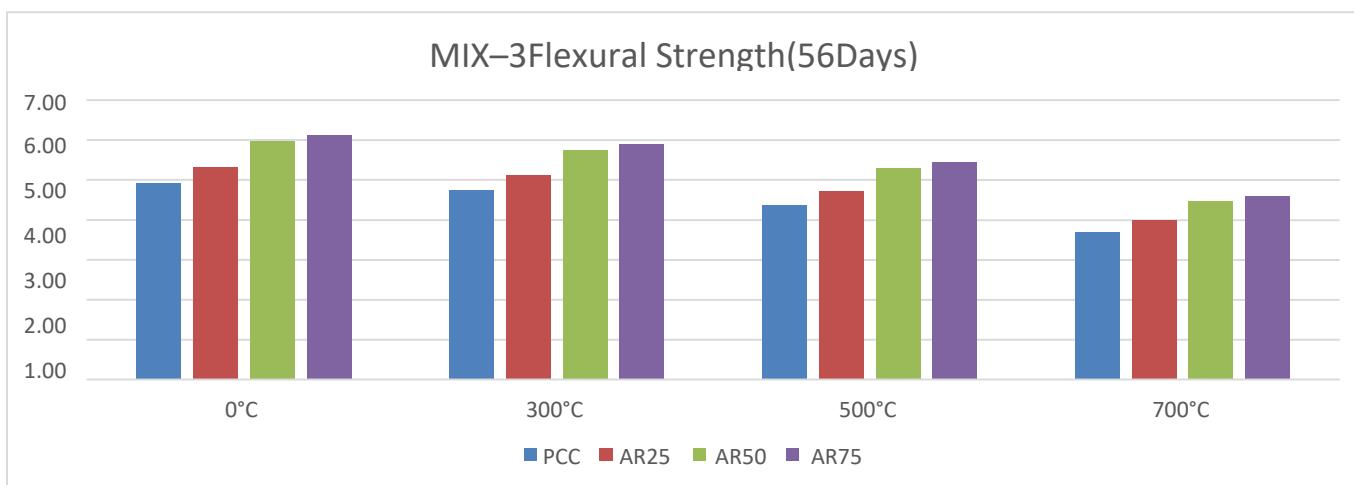


Fig.12 Flexural Strength (MIX-3)

VII. CONCLUSION

The findings indicate that the inclusion of BF results in an increase in the plain concrete's tensile, compressive, and flexural strengths. The workability of concrete is reduced as the length of fiber increases.

Temperature Effect:

- Up to 300°C, BFRC remains almost unaffected in appearance and strength effect.
- At elevated temperatures of 500°C and 700°C, a Reduction in a certain amount of strength is observed in BFRC. In the case of PC higher amount of strength reduction below residual strength is observed.

Aspect Ratio Effect:

- The investigation leads to the conclusion that adding BF to plain concrete increases its strength.
- Concrete gains strength as the BF Aspect Ratio rises.
- At AR-50, the strength of concrete shows a maximum increase beyond it at AR-75 slight increase in the strength of concrete.

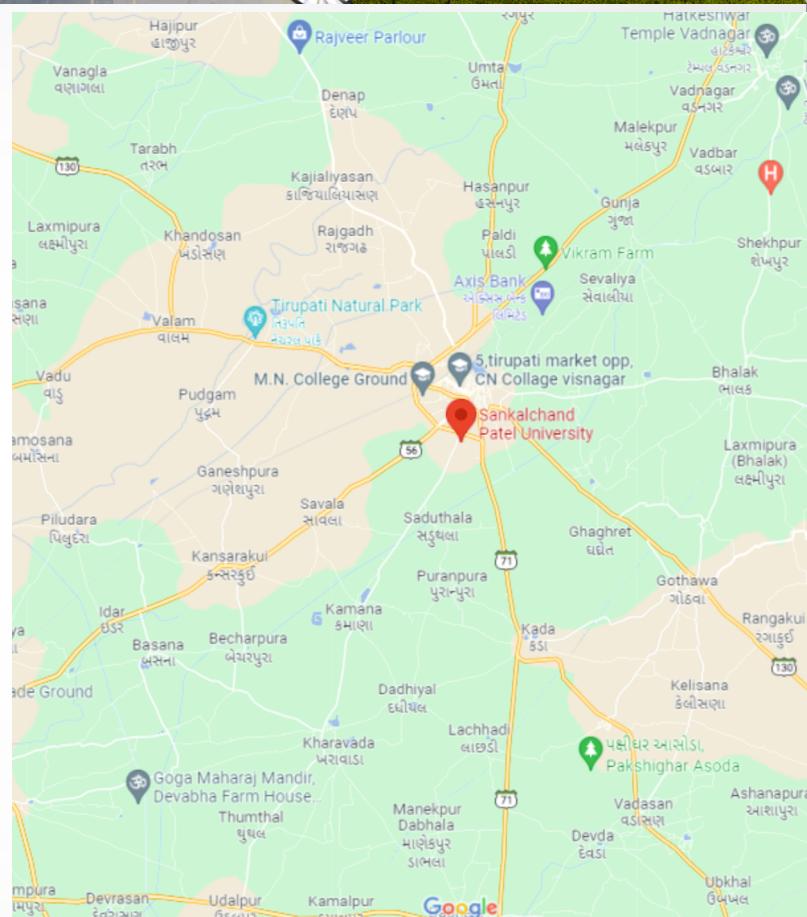
REFERENCES

- [1] Cory High, Hatem M. Seliem, Adel El-Safty, and Sami H. Rizkalla, "Use of basalt fibers for concrete structures, *Construction and Building Materials*," Science Direct, 2015, 37–46, ISSN:0950-0618
- [2] Anuja Narayan and Prabhavathy Shanmugasundaram, "Evaluation of heat resisting behavior of basalt fiber reinforced FG tiles" In *Construction and Building Materials*, Science Direct, 2018, 170, 679-689, ISSN:0950-0618
- [3] In Composite Structure, M. HassaniNiaki, A. Fereidoon, and M. Ghorbanzadeh Ahangari "An experimental investigation on the mechanical and thermal characteristics of basalt fiber and nano clay reinforced polymer concrete. 181, 231-238, Science Direct, 2018, ISSN: 0263-8223
- [4] Chang Yeon Lee and Jeong-II Choi, "Strength reduction and bonding characteristics of basalt fiber based on fiber orientation, *Materials*, MDPI, 2015, 8, ISSN:6719–6727
- [5] Zhongyu Lu, Guijun Xian, and Hui Li, *Construction & Building Materials*, "Influential temperatures on the mechanical characteristics of basalt fibers and fiber-reinforced polymer plates" (BFRP): Science Direct, 2015, 154, 191-203, ISSN:0950-0618
- [6] V. Kalyanavalli, T.K. AbilashaRamadhas, and D. Sastikumar, "Determination of thermal diffusivity of basalt fiber epoxy composite using infrared thermography," published in *Measurement*, Science Direct, in 2018.
- [7] Zhang Yihe, Yu Chunxiao, Paul K. Chu, Fengzhu, Chang'an Zhang, Junhui Ji, Rui Zhang, Heli Wang, "Mechanical and thermal properties of basalt fiber reinforced poly composites," *Material Chemistry and Physics*, Science Direct, 2012, 133, 845-849, ISSN:0254-0584.
- [8] Felix Bauer, Manuel Kempf, Frank Weiland, and Peter Middendorf's "Structure-property relationship of basalt fibers for high-performance applications," (Science Direct, 2018, 145, 121–128), there is a reference to the work.
- [9] Dehong Wang, Yanzhong Ju, Hao Shen, and Libin Xu, "Mechanical properties of high-performance concrete reinforced with basalt fiber and polypropylene fiber, *Construction and Building Materials*," Science Direct, 2018, 197, 464-473, ISSN:0950-0618
- [10] M. S. Shetty, *Concrete Technology*; S. Chand & Company PVT.LTD, Ram Nagar, New Delhi – 110055, 7th Edn, pp. 660.
- [11] P. Kumar Mehta and Paulo J.M. Monteiro, "Concrete: Microstructure, Properties, and Materials, Third Edition," Mc Graw-Hill Professional Publishing Company Limited, New York, pp. 6

SPU-JSTMTR COMMITTEE

Coordinator:

Dr. Rajesh P. Patel, Associate Professor, Department of Computer Engineering, Sankalchand Patel College of Engineering, Sankalchand Patel University


Committee Members:

Sr. No.	Faculty Name	Designation	Institute Name	Email Id
1	Dr. Hiteshkumar H. Mehta	Associate Professor	Smt. S.S. Patel Nootan Science and Commerce College	hhmehta.fsh@spu.ac.in
2	Dr. Pradeep Kumar Mishra	Associate Professor	Smt. S. B. Patel Institute of Business Management	pkmishra.fms@spu.ac.in
3	Dr. Bibhabasu Mohanty	Assistant Professor	Sankalchand Patel College of Engineering, Visnagar	bibhabasu.env@spcevng.ac.in
4	Prof. Rakesh Patel	Assistant Professor	Sankalchand Patel College of Engineering, Visnagar	rhpatel.mech@spcevng.ac.in
5	Prof. Jitendrakumar H. Darji	Assistant Professor	Sankalchand Patel College of Engineering, MCA Department	jhdarji.mca@spcevng.ac.in
6	Prof. Chaitali M. Patel	Assistant Professor	Shri. C.J. Patel College of Computer Studies	cmpatel.fcs@spu.ac.in
7	Dr. Vikaskumar J. Bhavsar	Assistant Professor	Sankalchand Patel College of Engineering, Visnagar	vjbhavsar.hm@spcevng.ac.in
8	Prof. Chhaya P. Patel	Assistant Professor	Sankalchand Patel College of Engineering, MBA Department	cppatel.mba@spcevng.ac.in
9	Prof. Pankaj. C. Patel	Lecturer	Swami Sachchidanand Polytechnic College	pcpatel.sspc@spu.ac.in
10	Dr. Harshadkumar P. Patel	Lecturer	Swami Sachchidanand Polytechnic College	hppatel.sspc@spu.ac.in

Sankalchand Patel Vidyadham,
Ambaji - Gandhinagar Highway
Visnagar 384315, India

Managing Editor, SPU Journals
Visnagar 384315, India
Mobile : +91 - 97128 23247
Email : communications.spujstmr@spu.ac.in
Website : <https://spujstmr.in/>

www.spu.ac.in.